Imperial College London

Numerical analysis of finite element methods for topology optimization problems

IMA Leslie Fox Prize 2023

etti a

Ioannis Papadopoulos

Topology optimization

(a) TO of compliance. https://tinyurl.com/523ep9av

(b) TO of compliance. https://tinyurl.com/y5mhmp6w

Topology optimization

(a) TO of compliance. https://tinyurl.com/523ep9av

(b) TO of compliance. https://tinyurl.com/y5mhmp6w

(c) TO of power dissipation. https://tinyurl.com/ysatz2pz

Topology optimization

(a) TO of compliance. https://tinyurl.com/523ep9av

(b) TO of compliance. https://tinyurl.com/y5mhmp6w

(c) TO of power dissipation. https://tinyurl.com/ysatz2pz

Shape vs. topology optimization

(b) Topology optimization

Models & optimization strategies

Imperial College London

The model for representing the topology of the minimizer:

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has \sim 10,000 citations. Over 20 professional software packages, consulting firms etc.

Models & optimization strategies

Imperial College London

The model for representing the topology of the minimizer:

citations. Over 20 professional software packages, consulting firms etc.

Models & optimization strategies

Imperial College London

The model for representing the topology of the minimizer:

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has \sim 10,000 citations. Over 20 professional software packages, consulting firms etc.

Imperial College London

Models for topology optimization problems tend to:

- involve PDEs \implies require a discretization, e.g. the finite element method (FEM).
- be nonconvex \implies may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

Imperial College London

Models for topology optimization problems tend to:

- involve PDEs \implies require a discretization, e.g. the finite element method (FEM).
- be nonconvex \implies may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

Models for topology optimization problems tend to:

- involve PDEs \implies require a discretization, e.g. the finite element method (FEM).
- be nonconvex \implies may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

Models for topology optimization problems tend to:

- involve PDEs \implies require a discretization, e.g. the finite element method (FEM).
- be nonconvex \implies may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

Models for topology optimization problems tend to:

- involve PDEs \implies require a discretization, e.g. the finite element method (FEM).
- be nonconvex \implies may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

Imperial College London

Double-pipe problem

- Stokes flow.
- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.

Imperial College London

Double-pipe problem

A fluid topology optimization problem

• Stokes flow.

- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.

Imperial College London

Double-pipe problem

- Stokes flow.
- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.

Imperial College London

Double-pipe problem

- Stokes flow.
- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.

Imperial College London

Double-pipe problem

- Stokes flow.
- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.

Double-pipe solutions

Double-pipe solutions

Imperial College London

(a) Straight channels

14 July 2023

Double-pipe solutions

What functions are we solving for?

Imperial College London

Given that the fluid can only occupy 1/3 of the total domain, we are solving for:

Red is where $\rho = 1$ and blue is where $\rho = 0$.

Imperial College London

Five-holes double-pipe setup.

Fluid topology optimization

- Navier-Stokes flow.
- Wish to minimize the power dissipation of the flow;
- Catch! The channels can occupy up to 1/3 area.

Imperial College London

J = 60.09

Imperial College London

J = 52.69

J = 42.52

J = 39.78

J = 38.78

J = 56.27

0

J = 55.60

J = 49.25

J = 43.72

J = 39.78

J = 38.78

J = 42.52

J = 39.67

J = 37.33

J = 41.24

J = 39.58

J = 34.74

J = 41.24

J = 39.58

J = 34.08

J = 40.08

J = 31.81

J = 40.24

J = 38.87

3D Borrvall-Petersson problem

- Stokes flow;
- Minimize the power dissipation;
- Channels can occupy up to 1/5 of the volume of the box.

Imperial College

London

3D Borrvall-Petersson problem

- Stokes flow;
- Minimize the power dissipation;
- Channels can occupy up to 1/5 of the volume of the box.

Refinement of 3D five-holes quadruple-pipe

Imperial College London

15,953,537 degrees of freedom.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

 † _h denotes the mesh size in the FEM discretization.

Imperial College London

Observations

- Many solutions to approximate.
- Millions of degrees of freedom.
- Mesh adaptivity strategies.
- Parameters may vary between 0 and 10¹⁰.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where $\|\operatorname{div}(u_h)\|_{L^2(\Omega)} = 0^{\dagger}$.

Question

Does the discretization converge to the (multiple) infinite-dimensional* minimizers?

- † _h denotes the mesh size in the FEM discretization.
- ^{*} An "infinite-dimensional" minimizer is a minimizer of the original problem before discretization.

Imperial College London

Generalized Stokes equations

$\alpha(\rho)u - \nu\Delta u + \nabla p = f,$	(Momentum equation)	(1)
$\operatorname{div}(u)=0,$	(Incompressibility)	(2)
$u _{\partial\Omega}=g.$	(Boundary conditions)	(3)

 $\alpha(\cdot)$ is an inverse permeability term.

$$\rho = 1, \text{ Momentum equation} \approx -\nu\Delta u + \nabla p = f \implies \text{Stokes},$$

 $\rho = 0, \text{ Momentum equation} \approx \alpha(\rho)u = f \implies u \approx 0.$

Imperial College London

Generalized Stokes equations

$\alpha(\rho)u - \nu\Delta u + \nabla p = f,$	(Momentum equation)	(1)
$\operatorname{div}(u)=0,$	(Incompressibility)	(2)
$u _{\partial\Omega}=g.$	(Boundary conditions)	(3)

 $\alpha(\cdot)$ is an inverse permeability term.

 $\rho = 1, \text{ Momentum equation} \approx -\nu\Delta u + \nabla p = f \implies \text{Stokes},$ $\rho = 0, \text{ Momentum equation} \approx \alpha(\rho)u = f \implies u \approx 0.$

Imperial College London

Generalized Stokes equations

$\alpha(\rho)u - \nu\Delta u + \nabla p = f,$	(Momentum equation)	(1)
$\operatorname{div}(u)=0,$	(Incompressibility)	(2)
$u _{\partial\Omega}=g.$	(Boundary conditions)	(3)

 $\alpha(\cdot)$ is an inverse permeability term.

$$\rho = 1, \text{ Momentum equation} \approx -\nu\Delta u + \nabla p = f \implies \text{Stokes},$$

 $\rho = 0, \text{ Momentum equation} \approx \alpha(\rho)u = f \implies u \approx 0.$

Imperial College London

The Borrvall–Petersson problem

Find the velocity, u, and the material distribution, ρ , that minimize

$$J(u,\rho) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho) |u|^2 + \nu |\nabla u|^2 - 2f \cdot u \right) \mathrm{d}x,$$

$$u \in H^{1}_{g,\operatorname{div}}(\Omega)^{d} := \{ v \in H^{1}(\Omega)^{d} : \operatorname{div}(v) = 0 \text{ a.e. in } \Omega, \ v|_{\partial\Omega} = g \text{ on } \partial\Omega \},$$
$$H^{1}(\Omega)^{d} := \{ v \in L^{2}(\Omega)^{d} : \nabla v \in L^{2}(\Omega)^{d \times d} \},$$
$$\rho \in C_{\gamma} := \left\{ \eta \in L^{\infty}(\Omega) : \mathbf{0} \le \eta \le \mathbf{1} \text{ a.e. in } \Omega, \ \int_{\Omega} \eta \ dx \le \gamma |\Omega| \right\}.$$

Imperial College London

The Borrvall–Petersson problem

Find the velocity, u, and the material distribution, ρ , that minimize

$$J(u,\rho) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho) |u|^2 + \nu |\nabla u|^2 - 2f \cdot u \right) \mathrm{d}x,$$

$$u \in H^{1}_{g,\operatorname{div}}(\Omega)^{d} := \{ v \in H^{1}(\Omega)^{d} : \operatorname{div}(v) = 0 \text{ a.e. in } \Omega, \ v|_{\partial\Omega} = g \text{ on } \partial\Omega \},$$
$$H^{1}(\Omega)^{d} := \{ v \in L^{2}(\Omega)^{d} : \nabla v \in L^{2}(\Omega)^{d \times d} \},$$
$$\rho \in C_{\gamma} := \left\{ \eta \in L^{\infty}(\Omega) : \mathbf{0} \le \eta \le 1 \text{ a.e. in } \Omega, \ \int_{\Omega} \eta \ dx \le \gamma |\Omega| \right\}.$$

Imperial College London

The Borrvall–Petersson problem

Find the velocity, u, and the material distribution, ρ , that minimize

$$J(u,\rho) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho) |u|^2 + \nu |\nabla u|^2 - 2f \cdot u \right) \mathrm{d}x,$$

$$u \in H^{1}_{g,\operatorname{div}}(\Omega)^{d} := \{ v \in H^{1}(\Omega)^{d} : \operatorname{div}(v) = 0 \text{ a.e. in } \Omega, \ v|_{\partial\Omega} = g \text{ on } \partial\Omega \},$$
$$H^{1}(\Omega)^{d} := \{ v \in L^{2}(\Omega)^{d} : \nabla v \in L^{2}(\Omega)^{d \times d} \},$$
$$\rho \in C_{\gamma} := \left\{ \eta \in L^{\infty}(\Omega) : 0 \le \eta \le 1 \text{ a.e. in } \Omega, \ \int_{\Omega} \eta \ dx \le \gamma |\Omega| \right\}.$$

Imperial College London

The Borrvall–Petersson problem

Find the velocity, u, and the material distribution, ρ , that minimize

$$J(u,\rho) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho) |u|^2 + \nu |\nabla u|^2 - 2f \cdot u \right) \mathrm{d}x,$$

$$u \in H^{1}_{g,\operatorname{div}}(\Omega)^{d} := \{ v \in H^{1}(\Omega)^{d} : \operatorname{div}(v) = 0 \text{ a.e. in } \Omega, \ v|_{\partial\Omega} = g \text{ on } \partial\Omega \},\$$
$$H^{1}(\Omega)^{d} := \{ v \in L^{2}(\Omega)^{d} : \nabla v \in L^{2}(\Omega)^{d \times d} \},\$$
$$\rho \in C_{\gamma} := \left\{ \eta \in L^{\infty}(\Omega) : 0 \leq \eta \leq 1 \text{ a.e. in } \Omega, \ \int_{\Omega} \eta \ dx \leq \gamma |\Omega| \right\}.$$

Imperial College London

$\boldsymbol{\alpha}$ has the following properties:

- $\ \, \textbf{0} \ \, \alpha: [0,1] \rightarrow [\underline{\alpha},\overline{\alpha}] \text{ with } \textbf{0} \leq \underline{\alpha} \text{ and } \overline{\alpha} < \infty;$
- 2 α is strongly convex and monotonically decreasing;
- (a) $\alpha(0) = \overline{\alpha} \text{ and } \alpha(1) = \underline{\alpha};$
- () α is twice continuously differentiable,

generating an operator also denoted $lpha: \mathit{C}_\gamma o L^\infty(\Omega; [lpha, \overlinelpha])$

Existence (T. Borrvall, J. Petersson, 2003)

Suppose that $\Omega \subset \mathbb{R}^d$ is a Lipschitz domain, with $d \in \{2,3\}$. If α satisfies (1)–(3), then $\exists (u, \rho) \in H^1_{g, \operatorname{div}}(\Omega)^d \times C_{\gamma}$ that minimises J.

Imperial College London

 α has the following properties:

- 2 α is strongly convex and monotonically decreasing;
- 3 $\alpha(0) = \overline{\alpha} \text{ and } \alpha(1) = \underline{\alpha};$
- ${f 0}$ α is twice continuously differentiable,

generating an operator also denoted $\alpha : C_{\gamma} \to L^{\infty}(\Omega; [\underline{\alpha}, \overline{\alpha}]).$

Existence (T. Borrvall, J. Petersson, 2003)

Suppose that $\Omega \subset \mathbb{R}^d$ is a Lipschitz domain, with $d \in \{2,3\}$. If α satisfies (1)–(3), then $\exists (u, \rho) \in H^1_{g, \operatorname{div}}(\Omega)^d \times C_{\gamma}$ that minimises J.

 α has the following properties:

- 2 α is strongly convex and monotonically decreasing;
- $\ \, \textbf{3} \ \, \alpha(\textbf{0}) = \overline{\alpha} \ \, \textbf{and} \ \, \alpha(1) = \underline{\alpha};$
- ${f 0}$ α is twice continuously differentiable,

generating an operator also denoted $\alpha : C_{\gamma} \to L^{\infty}(\Omega; [\underline{\alpha}, \overline{\alpha}]).$

Existence (T. Borrvall, J. Petersson, 2003)

Suppose that $\Omega \subset \mathbb{R}^d$ is a Lipschitz domain, with $d \in \{2,3\}$. If α satisfies (1)–(3), then $\exists (u, \rho) \in H^1_{g, div}(\Omega)^d \times C_{\gamma}$ that minimises J.

Imperial College London

First-order optimality conditions

Imperial College London

First-order optimality conditions

Suppose that α satisfies (1)–(4), $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$, is a Lipschitz domain, and $(u, \rho) \in H^1_{g, \operatorname{div}}(\Omega)^d \times C_{\gamma}$ is a minimizer of J. Then, $\exists \ p \in L^2_0(\Omega)$ such that:

$$egin{aligned} &\int_\Omega \left[lpha(
ho)u\cdot v+
u
abla u:
abla v-
ho\operatorname{div}(v)
ight]\mathrm{d}x=0 \ \ orall \ v\in H^1_0(\Omega)^d \ &\int_\Omega q \ \mathrm{div}(u)\mathrm{d}x=0 \ \ orall \ \ q\in L^2_0(\Omega), \ &\int_\Omega lpha'(
ho)|u|^2(\eta-
ho)\mathrm{d}x\geq 0 \ \ \ orall \ \ \ \eta\in C_\gamma. \end{aligned}$$

First-order optimality conditions

Imperial College London

First-order optimality conditions

Suppose that α satisfies (1)–(4), $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$, is a Lipschitz domain, and $(u, \rho) \in H^1_{g, \operatorname{div}}(\Omega)^d \times C_{\gamma}$ is a minimizer of J. Then, $\exists \ p \in L^2_0(\Omega)$ such that:

$$egin{aligned} &\int_\Omega \left[lpha(
ho)u\cdot v+
u
abla v\, u:
abla v-
ho\operatorname{div}(v)
ight]\mathrm{d}x=0 \ \ orall \ v\in H^1_0(\Omega)^d, \ &\int_\Omega q \ \mathrm{div}(u)\mathrm{d}x=0 \ \ orall \ q\in L^2_0(\Omega), \ &\int_\Omega lpha'(
ho)|u|^2(\eta-
ho)\mathrm{d}x\geq 0 \ \ orall \ \eta\in C_\gamma. \end{aligned}$$

First-order optimality conditions

Imperial College London

First-order optimality conditions

Suppose that α satisfies (1)–(4), $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$, is a Lipschitz domain, and $(u, \rho) \in H^1_{g, \operatorname{div}}(\Omega)^d \times C_{\gamma}$ is a minimizer of J. Then, $\exists \ p \in L^2_0(\Omega)$ such that:

$$\begin{split} \int_{\Omega} \left[\alpha(\rho) u \cdot v + \nu \nabla u : \nabla v - p \operatorname{div}(v) \right] \mathrm{d}x &= 0 \ \forall \ v \in H^1_0(\Omega)^d \\ \int_{\Omega} q \operatorname{div}(u) \mathrm{d}x &= 0 \ \forall \ q \in L^2_0(\Omega), \\ \int_{\Omega} \alpha'(\rho) |u|^2 (\eta - \rho) \mathrm{d}x \geq 0 \ \forall \ \eta \in C_{\gamma}. \end{split}$$

Imperial College London

Strong convergence

$$z_n \to z$$
 strongly in $L^q(\Omega)$ if $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$.

Weak convergence

$$z_n
ightarrow z$$
 weakly in $L^q(\Omega)$, if for all $v \in L^{q'}(\Omega)$, $1/q' + 1/q = 1$,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

Weak-* convergence in $L^{\infty}(\Omega)$

If $z_n \in L^{\infty}(\Omega)$, then $z_n \stackrel{*}{\rightharpoonup} z$ weakly-* in $L^{\infty}(\Omega)$, if for all $v \in L^1(\Omega)$, $\int_{\Omega} z_n v \, dx \to \int_{\Omega} zv \, dx$.

Weak convergence \Rightarrow strong convergence

 $\sin(nx) \rightarrow 0$ weakly in $L^2([0, 2\pi])$, but $\|\sin(nx) - 0\|_{L^2([0, 2\pi])} = \pi$ for all $n \in \mathbb{Z}_+$.

Imperial College London

Strong convergence

$$z_n \to z$$
 strongly in $L^q(\Omega)$ if $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$.

Weak convergence

$$z_n
ightarrow z$$
 weakly in $L^q(\Omega)$, if for all $v \in L^{q'}(\Omega)$, $1/q' + 1/q = 1$,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

Weak-* convergence in $L^{\infty}(\Omega)$

If $z_n \in L^{\infty}(\Omega)$, then $z_n \stackrel{*}{\rightharpoonup} z$ weakly-* in $L^{\infty}(\Omega)$, if for all $v \in L^1(\Omega)$, $\int_{\Omega} z_n v \, dx \to \int_{\Omega} zv \, dx$.

Weak convergence \Rightarrow strong convergence

 $sin(nx) \rightarrow 0$ weakly in $L^2([0, 2\pi])$, but $\|sin(nx) - 0\|_{L^2([0, 2\pi])} = \pi$ for all $n \in \mathbb{Z}_+$.

Imperial College London

Strong convergence

$$z_n \to z$$
 strongly in $L^q(\Omega)$ if $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$.

Weak convergence

$$z_n
ightarrow z$$
 weakly in $L^q(\Omega)$, if for all $v \in L^{q'}(\Omega)$, $1/q' + 1/q = 1$,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

Weak-* convergence in $L^{\infty}(\Omega)$

If $z_n \in L^{\infty}(\Omega)$, then $z_n \stackrel{*}{\rightharpoonup} z$ weakly-* in $L^{\infty}(\Omega)$, if for all $v \in L^1(\Omega)$, $\int_{\Omega} z_n v \, dx \to \int_{\Omega} zv \, dx$.

Weak convergence \Rightarrow strong convergence

 $\sin(nx) \rightarrow 0$ weakly in $L^2([0, 2\pi])$, but $\|\sin(nx) - 0\|_{L^2([0, 2\pi])} = \pi$ for all $n \in \mathbb{Z}_+$.

Imperial College London

Strong convergence

$$z_n \to z$$
 strongly in $L^q(\Omega)$ if $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$.

Weak convergence

$$z_n
ightarrow z$$
 weakly in $L^q(\Omega)$, if for all $v \in L^{q'}(\Omega)$, $1/q' + 1/q = 1$,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

Weak-* convergence in $L^{\infty}(\Omega)$

If $z_n \in L^{\infty}(\Omega)$, then $z_n \stackrel{*}{\rightharpoonup} z$ weakly-* in $L^{\infty}(\Omega)$, if for all $v \in L^1(\Omega)$, $\int_{\Omega} z_n v \, dx \to \int_{\Omega} zv \, dx$.

Weak convergence \Rightarrow strong convergence

 $\sin(nx) \rightarrow 0$ weakly in $L^2([0,2\pi])$, but $\|\sin(nx) - 0\|_{L^2([0,2\pi])} = \pi$ for all $n \in \mathbb{Z}_+$.

Poor behaviour of weak-* convergence

Imperial College London

Formation of checkerboard patterns.

- Both pairs satisfy an inf-sup condition;
- ② The Taylor–Hood pair is continuous across cells and $\mathrm{CG}_2\subset H^1(\Omega)^2$;
- 3 The BDM pair only enforces continuity in the normal direction across cells, BDM₁ ∉ H¹(Ω)²;
- For the classical Stokes problem, $\|\operatorname{div}(u_{\mathsf{BDM}})\|_{L^2(\Omega)} = 0$ whereas $\|\operatorname{div}(u_{\mathsf{TH}})\|_{L^2(\Omega)} \neq 0$.

Both pairs satisfy an inf-sup condition;

- ② The Taylor–Hood pair is continuous across cells and $\operatorname{CG}_2 \subset H^1(\Omega)^2;$
- 3 The BDM pair only enforces continuity in the normal direction across cells, BDM₁ ∉ H¹(Ω)²;
- If For the classical Stokes problem, $\|\operatorname{div}(u_{\mathsf{BDM}})\|_{L^2(\Omega)} = 0$ whereas $\|\operatorname{div}(u_{\mathsf{TH}})\|_{L^2(\Omega)} \neq 0$.

- Both pairs satisfy an inf-sup condition;
- 2 The Taylor–Hood pair is continuous across cells and $CG_2 \subset H^1(\Omega)^2$;
- The BDM pair only enforces continuity in the normal direction across cells, BDM₁ ⊄ H¹(Ω)²;

(1) For the classical Stokes problem, $\|\operatorname{div}(u_{\mathsf{BDM}})\|_{L^2(\Omega)} = 0$ whereas $\|\operatorname{div}(u_{\mathsf{TH}})\|_{L^2(\Omega)} \neq 0$.

- Both pairs satisfy an inf-sup condition;
- 2 The Taylor–Hood pair is continuous across cells and $CG_2 \subset H^1(\Omega)^2$;
- The BDM pair only enforces continuity in the normal direction across cells, BDM₁ ∉ H¹(Ω)²;
- For the classical Stokes problem, $\|\operatorname{div}(u_{\mathsf{BDM}})\|_{L^2(\Omega)} = 0$ whereas $\|\operatorname{div}(u_{\mathsf{TH}})\|_{L^2(\Omega)} \neq 0$.

(Conforming) T. Borrvall & J. Petersson (2003)

Let (u_h, ρ_h) be a sequence of finite element minimizers. Then, \exists a minimizer (u, ρ) such that

 $u_h \rightharpoonup u$ weakly in $H^1(\Omega)^d$, $\rho_h \stackrel{*}{\rightharpoonup} \rho$ weakly-* in $L^{\infty}(\Omega)$.

Questions?

- What is (u, ρ) ? Is it a local or global minimum? What about the other minima?
- ② Can we strengthen the result to strong convergence?
- What about the pressure p?

(Conforming) T. Borrvall & J. Petersson (2003)

Let (u_h, ρ_h) be a sequence of finite element minimizers. Then, \exists a minimizer (u, ρ) such that

$$u_h \rightharpoonup u$$
 weakly in $H^1(\Omega)^d$,
 $\rho_h \stackrel{*}{\rightharpoonup} \rho$ weakly-* in $L^{\infty}(\Omega)$.

Questions?

- **(**) What is (u, ρ) ? Is it a local or global minimum? What about the other minima?
- ② Can we strengthen the result to strong convergence?
- What about the pressure p?

(Conforming) I. P. & E. Süli (2022)

Given an isolated minimizer and its associated Lagrange multiplier (u, ρ, p) , there exists a sequence of finite element solutions (u_h, ρ_h, p_h) to the discretized first-order optimality conditions such that:

 $u_h \to u$ strongly in $H^1(\Omega)^d$, $\rho_h \to \rho$ strongly in $L^s(\Omega)$, $s \ge 1$, $p_h \to p$ strongly in $L^2(\Omega)$.

Questions?

What if $u_h \notin H^1(\Omega)^d$ (e.g. for the BDM pair)?

- $J(u_h, \rho_h)$ is ill-defined due to $\int_{\Omega} \nu |\nabla u|^2 dx$ term.
- Boundary conditions are not enforced exactly.
- Classical compactness results no longer hold.

(Conforming) I. P. & E. Süli (2022)

Given an isolated minimizer and its associated Lagrange multiplier (u, ρ, p) , there exists a sequence of finite element solutions (u_h, ρ_h, p_h) to the discretized first-order optimality conditions such that:

 $u_h \to u$ strongly in $H^1(\Omega)^d$, $\rho_h \to \rho$ strongly in $L^s(\Omega)$, $s \ge 1$, $p_h \to p$ strongly in $L^2(\Omega)$.

Questions?

What if $u_h \notin H^1(\Omega)^d$ (e.g. for the BDM pair)?

- $J(u_h, \rho_h)$ is ill-defined due to $\int_{\Omega} \nu |\nabla u|^2 dx$ term.
- Boundary conditions are not enforced exactly.
- Classical compactness results no longer hold.

(Conforming) I. P. & E. Süli (2022)

Given an isolated minimizer and its associated Lagrange multiplier (u, ρ, p) , there exists a sequence of finite element solutions (u_h, ρ_h, p_h) to the discretized first-order optimality conditions such that:

 $u_h \to u$ strongly in $H^1(\Omega)^d$, $\rho_h \to \rho$ strongly in $L^s(\Omega)$, $s \ge 1$, $p_h \to p$ strongly in $L^2(\Omega)$.

Questions?

What if $u_h \notin H^1(\Omega)^d$ (e.g. for the BDM pair)?

- $J(u_h, \rho_h)$ is ill-defined due to $\int_{\Omega} \nu |\nabla u|^2 dx$ term.
- Boundary conditions are not enforced exactly.
- Classical compactness results no longer hold.
Imperial College London

$$J_{h}(u_{h},\rho_{h}) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho_{h}) |u_{h}|^{2} - 2f \cdot u_{h} \right) dx$$

$$\int_{\Omega} |\nabla u_{h}|^{2} dx \approx \begin{cases} +\frac{\nu}{2} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla u_{h}|^{2} dx \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{ \nabla u_{h} \}_{F} : \llbracket u_{h} \rrbracket_{F} ds \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{ \nabla u_{h} \}_{F} : \llbracket u_{h} - g_{h} \rrbracket_{F} ds \end{cases}$$

$$lty \text{ for continuity} \begin{cases} +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} \rrbracket_{F}|^{2} ds \\ +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{0}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} - g_{h} \rrbracket_{F}|^{2} ds \end{cases}$$

$$\begin{split} H(\operatorname{div};\Omega)^d &:= \{ v \in L^2(\Omega)^d : \operatorname{div}(v) \in L^2(\Omega) \}, \\ \|v\|_{H^1(\mathcal{T}_h)}^2 &:= \|v\|_{L^2(\Omega)}^2 + \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{L^2(K)}^2 + \sum_{F \in \mathcal{F}_h} \int_F h_F^{-1} |\llbracket v \rrbracket_F|^2 \, \mathrm{d}s. \end{split}$$

Imperial College London

$$J_{h}(u_{h},\rho_{h}) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho_{h}) |u_{h}|^{2} - 2f \cdot u_{h} \right) dx$$

$$\frac{\nu}{2} \int_{\Omega} |\nabla u_{h}|^{2} dx \approx \begin{cases} +\frac{\nu}{2} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla u_{h}|^{2} dx \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : \llbracket u_{h} \rrbracket_{F} ds \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : \llbracket u_{h} - g_{h} \rrbracket_{F} ds \end{cases}$$
where the point of the continuity
$$\begin{cases} +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} \rrbracket_{F}|^{2} ds \\ +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} - g_{h} \rrbracket_{F}|^{2} ds \end{cases}$$

$$\begin{split} H(\operatorname{div};\Omega)^d &:= \{ v \in L^2(\Omega)^d : \operatorname{div}(v) \in L^2(\Omega) \}, \\ \|v\|_{H^1(\mathcal{T}_h)}^2 &:= \|v\|_{L^2(\Omega)}^2 + \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{L^2(K)}^2 + \sum_{F \in \mathcal{F}_h} \int_F h_F^{-1} |\llbracket v \rrbracket_F|^2 \, \mathrm{d}s. \end{split}$$

Imperial College London

$$J_{h}(u_{h},\rho_{h}) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho_{h}) |u_{h}|^{2} - 2f \cdot u_{h} \right) dx$$

$$\frac{\nu}{2} \int_{\Omega} |\nabla u_{h}|^{2} dx \approx \begin{cases} +\frac{\nu}{2} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla u_{h}|^{2} dx \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : \llbracket u_{h} \rrbracket_{F} ds \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : \llbracket u_{h} - g_{h} \rrbracket_{F} ds \end{cases}$$
Penalty for continuity
$$\begin{cases} +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} \rrbracket_{F}|^{2} ds \\ +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |\llbracket u_{h} - g_{h} \rrbracket_{F}|^{2} ds \end{cases}$$

$$\begin{split} H(\operatorname{div};\Omega)^d &:= \{ v \in L^2(\Omega)^d : \operatorname{div}(v) \in L^2(\Omega) \}, \\ \|v\|_{H^1(\mathcal{T}_h)}^2 &:= \|v\|_{L^2(\Omega)}^2 + \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{L^2(K)}^2 + \sum_{F \in \mathcal{F}_h} \int_F h_F^{-1} |\llbracket v \rrbracket_F|^2 \, \mathrm{d}s. \end{split}$$

Imperial College London

$$J_{h}(u_{h},\rho_{h}) := \frac{1}{2} \int_{\Omega} \left(\alpha(\rho_{h}) |u_{h}|^{2} - 2f \cdot u_{h} \right) dx$$

$$\frac{\nu}{2} \int_{\Omega} |\nabla u_{h}|^{2} dx \approx \begin{cases} +\frac{\nu}{2} \sum_{K \in \mathcal{T}_{h}} \int_{K} |\nabla u_{h}|^{2} dx \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : [\![u_{h}]]_{F} ds \\ -\nu \sum_{F \in \mathcal{F}_{h}^{i}} \int_{F} \{\!\!\{\nabla u_{h}\}\!\!\}_{F} : [\![u_{h} - g_{h}]]_{F} ds \end{cases}$$
Penalty for continuity
$$\begin{cases} +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |[\![u_{h}]]_{F}|^{2} ds \\ +\frac{\nu}{2} \sum_{F \in \mathcal{F}_{h}^{i}} \sigma h_{F}^{-1} \int_{F} |[\![u_{h} - g_{h}]]_{F}|^{2} ds \end{cases}$$

$$\begin{split} H(\operatorname{div};\Omega)^d &:= \{ v \in L^2(\Omega)^d : \operatorname{div}(v) \in L^2(\Omega) \}, \\ \|v\|_{H^1(\mathcal{T}_h)}^2 &:= \|v\|_{L^2(\Omega)}^2 + \sum_{K \in \mathcal{T}_h} \|\nabla v\|_{L^2(K)}^2 + \sum_{F \in \mathcal{F}_h} \int_F h_F^{-1} |\llbracket v \rrbracket_F|^2 \, \mathrm{d}s. \end{split}$$

Imperial College London

Key idea: fix an isolated local minimizer (u, ρ) .

Imperial College London

(*)

Consider the modified finite-dimensional optimization problem:

Find $(u_h^*, \rho_h^*) \in \mathcal{B} \cap (V_h \times C_{\gamma,h})$ that minimizes $J_h(v_h, \eta_h)$. $u_h \notin H^1(\Omega)^d$, $V_h \notin H^1_{\sigma,div}(\Omega)^d$ and $C_{\gamma,h} \subset C_{\gamma}$.

 (u_h^*, ρ_h^*) is not computable in practice.

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find
$$(u_h^*, \rho_h^*) \in \mathcal{B} \cap (V_h \times C_{\gamma,h})$$
 that minimizes $J_h(v_h, \eta_h)$. (*)
 $u_h \notin H^1(\Omega)^d, \ V_h \notin H^1_{g, \operatorname{div}}(\Omega)^d$ and $C_{\gamma,h} \subset C_{\gamma}$.

 (u_h^*, ρ_h^*) is not computable in practice.

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find
$$(u_h^*, \rho_h^*) \in \mathcal{B} \cap (V_h \times C_{\gamma,h})$$
 that minimizes $J_h(v_h, \eta_h)$. (*)
 $u_h \notin H^1(\Omega)^d, \ V_h \notin H^1_{g, div}(\Omega)^d$ and $C_{\gamma,h} \subset C_{\gamma}$.

 (u_h^*, ρ_h^*) is not computable in practice.

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find
$$(u_h^*, \rho_h^*) \in B \cap (V_h \times C_{\gamma,h})$$
 that minimizes $J_h(v_h, \eta_h)$. (*)

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find $(u_h^*, \rho_h^*) \in B \cap (V_h \times C_{\gamma,h})$ that minimizes $J_h(v_h, \eta_h)$. (*)

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find $(u_h^*, \rho_h^*) \in B \cap (V_h \times C_{\gamma,h})$ that minimizes $J_h(v_h, \eta_h)$. (*)

Imperial College London

Consider the modified finite-dimensional optimization problem:

Find $(u_h^*, \rho_h^*) \in B \cap (V_h \times C_{\gamma,h})$ that minimizes $J_h(v_h, \eta_h)$. (*)

No dependence on *B*. One may solve the discretized FOCs for (u_h, ρ_h, p_h)

Numerical examples

Imperial College London

Convergence of the double-pipe problem on a sequence of uniformly refined meshes with a $DG_0 \times BDM_1 \times DG_0$ discretization for (ρ_h, u_h, p_h) .

Numerical examples

Imperial College London

Convergence of the double-pipe problem on a sequence of uniformly refined meshes with a $DG_0 \times BDM_1 \times DG_0$ discretization for (ρ_h, u_h, p_h) .

Numerical examples

Imperial College London

	Straight channels		Double-ended wrench	
h	BDM	Taylor–Hood	BDM	Taylor–Hood
$4.51 imes 10^{-2}$	$1.00 imes 10^{-8}$	$2.49 imes 10^{-1}$	$2.69 imes 10^{-6}$	$3.25 imes 10^{-1}$
$2.25 imes 10^{-2}$	$6.35 imes10^{-9}$	$1.09 imes10^{-1}$	$2.75 imes 10^{-8}$	$1.35 imes10^{-1}$
$1.13 imes 10^{-2}$	$1.59 imes10^{-7}$	$3.95 imes10^{-2}$	$2.62 imes 10^{-8}$	$4.66 imes10^{-2}$
$5.63 imes 10^{-3}$	$4.19 imes10^{-8}$	$1.19 imes10^{-2}$	$1.48 imes10^{-7}$	$1.36 imes10^{-2}$
2.82×10^{-3}	$4.97 imes 10^{-7}$	$3.17 imes 10^{-3}$	$2.98 imes 10^{-7}$	$3.58 imes 10^{-3}$

Table 1: Reported values for $\|\operatorname{div}(u_h)\|_{L^2(\Omega)}$ in a BDM and Taylor–Hood discretization for the double-pipe problem as measured on five meshes in a uniformly refined mesh hierarchy.

Future work

Imperial College London

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Imperial College London

- Solutions of 3D Borrvall–Petersson problems are useful ⇒ requires preconditioners and low errors ⇒ use a divergence-free DG finite element for the velocity-pressure pair.
- This talk outlines the proof of strong convergence for the divergence-free DG discretization.
- Forms the basis for proving useful results including optimal mesh adaptivity strategies and well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022. https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

Thank you for listening!

⊠ ioannis.papadopoulos13@imperial.ac.uk

Imperial College London

Deflated barrier method

 $Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Imperial College London

Deflated barrier method

$Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Step I: optimize from initial guess

Imperial College London

Deflated barrier method

 $Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Solution space	
X	

Step II: deflate solution found

Imperial College London

Deflated barrier method

 $Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Step I: optimize from initial guess

Imperial College London

Deflated barrier method

 $Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Solution space	
X	

Step II: deflate solution found

Imperial College London

Deflated barrier method

 $Continuation \ scheme \ + \ primal-dual \ active \ set \ strategy \ + \ deflation$

Step III: termination on nonconvergence

Construction of deflated problems

A nonlinear transformation of first-order optimality conditions

$$\mathcal{F}(z) = 0 \rightarrow \mathcal{G}(z) := \mathcal{M}(z; r)\mathcal{F}(z) = 0.$$

A deflation operator

We say that $\mathcal{M}(z; r)$ is a deflation operator if for any sequence $z \to r$

$$\liminf_{z\to r} \|\mathcal{G}(z)\| = \liminf_{z\to r} \|\mathcal{M}(z;r)\mathcal{F}(z)\| > 0.$$

Theorem

This is a deflation operator for $p \ge 1$:

$$\mathcal{M}(z;r) = \left(\frac{1}{\|z-r\|^p} + 1\right).$$

Construction of deflated problems

A nonlinear transformation of first-order optimality conditions

$$\mathcal{F}(z) = 0 \rightarrow \mathcal{G}(z) := \mathcal{M}(z; r)\mathcal{F}(z) = 0.$$

A deflation operator

We say that $\mathcal{M}(z;r)$ is a deflation operator if for any sequence z o r

$$\liminf_{z\to r} \|\mathcal{G}(z)\| = \liminf_{z\to r} \|\mathcal{M}(z;r)\mathcal{F}(z)\| > 0.$$

Theorem

This is a deflation operator for $p \ge 1$:

$$\mathcal{M}(z;r) = \left(\frac{1}{\|z-r\|^p} + 1\right).$$

Construction of deflated problems

A nonlinear transformation of first-order optimality conditions

$$\mathcal{F}(z) = 0 \rightarrow \mathcal{G}(z) := \mathcal{M}(z; r)\mathcal{F}(z) = 0.$$

A deflation operator

We say that $\mathcal{M}(z; r)$ is a deflation operator if for any sequence $z \to r$

$$\liminf_{z\to r} \|\mathcal{G}(z)\| = \liminf_{z\to r} \|\mathcal{M}(z;r)\mathcal{F}(z)\| > 0.$$

Theorem

This is a deflation operator for $p \ge 1$:

$$\mathcal{M}(z;r) = \left(\frac{1}{\|z-r\|^p} + 1\right).$$