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Topology optimization

(a) TO of compliance.
https://tinyurl.com/523ep9av

(b) TO of compliance.
https://tinyurl.com/y5mhmp6w

(c) TO of power dissipation.
https://tinyurl.com/ysatz2pz

(d) Aage et al., Nature (2017). (e) Alonso et al.,
CAMWA (2019).
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Shape vs. topology optimization

(a) Shape optimization

(b) Topology optimization
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Models & optimization strategies

The model for representing the topology of the minimizer:

(a) Density. (b) Level-set.

(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has ∼ 10, 000
citations. Over 20 professional software packages, consulting firms etc.
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Numerical difficulties

Models for topology optimization problems tend to:

involve PDEs =⇒ require a discretization, e.g. the finite element method (FEM).

be nonconvex =⇒ may support multiple local minima.

Open questions

What is the best model?

How do we interpret regions that are neither completely void or continuum?

Do discretizations of the models actually converge to the minimizers of the
original problem?

Are the discretizations well behaved?

Can we prove error bounds?

Is there a general framework for proving convergence of FEM to all
(density-based) topology optimization problems?
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The Borrvall–Petersson problem

Double-pipe problem

A fluid topology optimization problem

Stokes flow.

Wish to minimize the power dissipation of the flow;

Catch! The channels can occupy up to 1/3 area.

Requires solving a nonconvex optimization problem with PDE, box, and volume
constraints.
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Double-pipe solutions

(a) Straight channels (b) Double-ended wrench
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What functions are we solving for?

Given that the fluid can only occupy 1/3 of the total domain, we are solving for:

Material distribution
ρ : Ω→ [0, 1]

Velocity
u : Ω→ R2

Pressure
p : Ω→ R

Red is where ρ = 1 and blue is where ρ = 0.
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A fluid topology optimization problem

Five-holes double-pipe setup.

Fluid topology optimization

Navier–Stokes flow.

Wish to minimize the power dissipation of the flow;

Catch! The channels can occupy up to 1/3 area.
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A fluid topology optimization problem
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3D five-holes quadruple-pipe

3D Borrvall–Petersson problem

Stokes flow;

Minimize the power dissipation;

Channels can occupy up to 1/5 of the volume of the box.
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3D five-holes quadruple-pipe
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3D five-holes quadruple-pipe
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Refinement of 3D five-holes quadruple-pipe

15,953,537 degrees of freedom.

14 July 2023 13



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Choice of discretization

Observations

Many solutions to approximate.
Millions of degrees of freedom.

Mesh adaptivity strategies.
Parameters may vary between 0 and 1010.

Consequences

We require preconditioners for the solves e.g. effective multigrid cycles & small errors
in the velocity, material distribution, and pressure discretizations.

Our proposal

Use a discontinuous Galerkin (DG) mixed finite element where ‖div(uh)‖L2(Ω) = 0†.

Question

Does the discretization converge to the (multiple) infinite-dimensional∗ minimizers?

†
h denotes the mesh size in the FEM discretization.
∗ An “infinite-dimensional” minimizer is a minimizer of the original problem before discretization.

14 July 2023 14



Topology optimization of fluid flow

Generalized Stokes equations

α(ρ)u − ν∆u +∇p = f , (Momentum equation) (1)

div(u) = 0, (Incompressibility) (2)

u|∂Ω = g . (Boundary conditions) (3)

α(·) is an inverse permeability term.

ρ = 1, Momentum equation ≈ α(ρ)u−ν∆u +∇p = f =⇒ Stokes,

ρ = 0, Momentum equation ≈ α(ρ)u−ν∆u +∇p = f =⇒ u ≈ 0.
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Topology optimization of fluid flow

The Borrvall–Petersson problem

Find the velocity, u, and the material distribution, ρ, that minimize

J(u, ρ) :=
1

2

∫
Ω

(
α(ρ)|u|2 + ν|∇u|2 − 2f · u

)
dx ,

where

u ∈ H1
g ,div(Ω)d := {v ∈ H1(Ω)d : div(v) = 0 a.e. in Ω, v |∂Ω = g on ∂Ω},
H1(Ω)d := {v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d},

ρ ∈ Cγ :=

{
η ∈ L∞(Ω) : 0 ≤ η ≤ 1 a.e. in Ω,

∫
Ω
η dx ≤ γ|Ω|

}
.
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Topology optimization of fluid flow

α has the following properties:

1 α : [0, 1]→ [α, α] with 0 ≤ α and α <∞;

2 α is strongly convex and monotonically decreasing;

3 α(0) = α and α(1) = α;

4 α is twice continuously differentiable,

generating an operator also denoted α : Cγ → L∞(Ω; [α, α]).

Existence (T. Borrvall, J. Petersson, 2003)

Suppose that Ω ⊂ Rd is a Lipschitz domain, with d ∈ {2, 3}. If α satisfies (1)–(3),
then ∃ (u, ρ) ∈ H1

g ,div(Ω)d × Cγ that minimises J.
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First-order optimality conditions

First-order optimality conditions

Suppose that α satisfies (1)–(4), Ω ⊂ Rd , d ∈ {2, 3}, is a Lipschitz domain, and
(u, ρ) ∈ H1

g ,div(Ω)d × Cγ is a minimizer of J. Then, ∃ p ∈ L2
0(Ω) such that:∫

Ω
[α(ρ)u · v + ν∇u : ∇v − p div(v)] dx = 0 ∀ v ∈ H1

0 (Ω)d ,∫
Ω
q div(u)dx = 0 ∀ q ∈ L2

0(Ω),∫
Ω
α′(ρ)|u|2(η − ρ)dx ≥ 0 ∀ η ∈ Cγ .
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Types of convergence

Strong convergence

zn → z strongly in Lq(Ω) if limn→∞ ‖zn − z‖Lq(Ω) = 0.

Weak convergence

zn ⇀ z weakly in Lq(Ω), if for all v ∈ Lq
′
(Ω), 1/q′ + 1/q = 1,∫

Ω

znv dx →
∫

Ω

zv dx .

Weak-* convergence in L∞(Ω)

If zn ∈ L∞(Ω), then zn
∗
⇀ z weakly-* in L∞(Ω), if for all v ∈ L1(Ω),

∫
Ω
znv dx →

∫
Ω
zv dx .

Weak convergence ; strong convergence

sin(nx) ⇀ 0 weakly in L2([0, 2π]), but ‖ sin(nx)− 0‖L2([0,2π]) = π for all n ∈ Z+.

14 July 2023 19



Types of convergence

Strong convergence

zn → z strongly in Lq(Ω) if limn→∞ ‖zn − z‖Lq(Ω) = 0.

Weak convergence

zn ⇀ z weakly in Lq(Ω), if for all v ∈ Lq
′
(Ω), 1/q′ + 1/q = 1,∫

Ω

znv dx →
∫

Ω

zv dx .

Weak-* convergence in L∞(Ω)

If zn ∈ L∞(Ω), then zn
∗
⇀ z weakly-* in L∞(Ω), if for all v ∈ L1(Ω),

∫
Ω
znv dx →

∫
Ω
zv dx .

Weak convergence ; strong convergence

sin(nx) ⇀ 0 weakly in L2([0, 2π]), but ‖ sin(nx)− 0‖L2([0,2π]) = π for all n ∈ Z+.

14 July 2023 19



Types of convergence

Strong convergence

zn → z strongly in Lq(Ω) if limn→∞ ‖zn − z‖Lq(Ω) = 0.

Weak convergence

zn ⇀ z weakly in Lq(Ω), if for all v ∈ Lq
′
(Ω), 1/q′ + 1/q = 1,∫

Ω

znv dx →
∫

Ω

zv dx .

Weak-* convergence in L∞(Ω)

If zn ∈ L∞(Ω), then zn
∗
⇀ z weakly-* in L∞(Ω), if for all v ∈ L1(Ω),

∫
Ω
znv dx →

∫
Ω
zv dx .

Weak convergence ; strong convergence

sin(nx) ⇀ 0 weakly in L2([0, 2π]), but ‖ sin(nx)− 0‖L2([0,2π]) = π for all n ∈ Z+.

14 July 2023 19



Types of convergence

Strong convergence

zn → z strongly in Lq(Ω) if limn→∞ ‖zn − z‖Lq(Ω) = 0.

Weak convergence

zn ⇀ z weakly in Lq(Ω), if for all v ∈ Lq
′
(Ω), 1/q′ + 1/q = 1,∫

Ω

znv dx →
∫

Ω

zv dx .

Weak-* convergence in L∞(Ω)

If zn ∈ L∞(Ω), then zn
∗
⇀ z weakly-* in L∞(Ω), if for all v ∈ L1(Ω),

∫
Ω
znv dx →

∫
Ω
zv dx .

Weak convergence ; strong convergence

sin(nx) ⇀ 0 weakly in L2([0, 2π]), but ‖ sin(nx)− 0‖L2([0,2π]) = π for all n ∈ Z+.

14 July 2023 19



Poor behaviour of weak-* convergence

Formation of checkerboard patterns.
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Motivation for DG methods
Throughout ρh ∈ Cγ and ph ∈ L2(Ω).

Conforming =⇒ uh ∈ H1(Ω)d , Divergence-free DG =⇒ uh /∈ H1(Ω)d .

(a) Taylor–Hood pair (b) Brezzi–Douglas–Marini pair

1 Both pairs satisfy an inf-sup condition;

2 The Taylor–Hood pair is continuous across cells and CG2 ⊂ H1(Ω)2;

3 The BDM pair only enforces continuity in the normal direction across cells,
BDM1 6⊂ H1(Ω)2;

4 For the classical Stokes problem, ‖div(uBDM)‖L2(Ω) = 0 whereas ‖div(uTH)‖L2(Ω) 6= 0.
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(Brief) history of FEM convergence

(Conforming) T. Borrvall & J. Petersson (2003)

Let (uh, ρh) be a sequence of finite element minimizers. Then, ∃ a minimizer (u, ρ)
such that

uh ⇀ u weakly in H1(Ω)d ,

ρh
∗
⇀ ρ weakly-* in L∞(Ω).

Questions?
1 What is (u, ρ)? Is it a local or global minimum? What about the other minima?

2 Can we strengthen the result to strong convergence?

3 What about the pressure p?
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(Brief) history of FEM convergence

(Conforming) I. P. & E. Süli (2022)

Given an isolated minimizer and its associated Lagrange multiplier (u, ρ, p), there
exists a sequence of finite element solutions (uh, ρh, ph) to the discretized first-order
optimality conditions such that:

uh → u strongly in H1(Ω)d ,

ρh → ρ strongly in Ls(Ω), s ≥ 1,

ph → p strongly in L2(Ω).

Questions?

What if uh /∈ H1(Ω)d (e.g. for the BDM pair)?

J(uh, ρh) is ill-defined due to
∫

Ω ν|∇u|2 dx term.

Boundary conditions are not enforced exactly.

Classical compactness results no longer hold.
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Finite element convergence

Jh(uh, ρh) :=
1

2

∫
Ω

(
α(ρh)|uh|2 − 2f · uh

)
dx

ν

2

∫
Ω
|∇uh|2 dx ≈


+ν

2

∑
K∈Th

∫
K |∇uh|2dx

−ν∑F∈F i
h

∫
F{{∇uh}}F : [[uh]]F ds

−ν∑F∈F∂
h

∫
F{{∇uh}}F : [[uh − gh]]F ds

Penalty for continuity

+ν
2

∑
F∈F i

h
σh−1

F

∫
F |[[uh]]F |2ds

+ν
2

∑
F∈F∂

h
σh−1

F

∫
F |[[uh − gh]]F |2ds

Definitions

H(div; Ω)d := {v ∈ L2(Ω)d : div(v) ∈ L2(Ω)},

‖v‖2
H1(Th) := ‖v‖2

L2(Ω) +
∑
K∈Th

‖∇v‖2
L2(K) +

∑
F∈Fh

∫
F

h−1
F |[[v ]]F |2 ds.
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Outline of FEM convergence proof

Key idea: fix an isolated local minimizer (u, ρ).

0 0

1 1

,
1

1

0
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Outline of FEM convergence proof
Consider the modified finite-dimensional optimization problem:

Find (u∗h , ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

uh /∈ H1(Ω)d , Vh 6⊂ H1
g ,div(Ω)d and Cγ,h ⊂ Cγ .

(u∗h , ρ
∗
h) is not computable in practice.

,

𝐻𝒈,div div;

14 July 2023 26



Outline of FEM convergence proof
Consider the modified finite-dimensional optimization problem:

Find (u∗h , ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

uh /∈ H1(Ω)d , Vh 6⊂ H1
g ,div(Ω)d and Cγ,h ⊂ Cγ .

(u∗h , ρ
∗
h) is not computable in practice.

,

𝐻𝒈,div div;

14 July 2023 26



Outline of FEM convergence proof
Consider the modified finite-dimensional optimization problem:

Find (u∗h , ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

uh /∈ H1(Ω)d , Vh 6⊂ H1
g ,div(Ω)d and Cγ,h ⊂ Cγ .

(u∗h , ρ
∗
h) is not computable in practice.

,

𝐻𝒈,div div;

14 July 2023 26



Outline of FEM convergence proof

Consider the modified finite-dimensional optimization problem:

Find (u∗h, ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

14 July 2023 27



Outline of FEM convergence proof

Consider the modified finite-dimensional optimization problem:

Find (u∗h, ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

2

14 July 2023 27



Outline of FEM convergence proof

Consider the modified finite-dimensional optimization problem:

Find (u∗h, ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

1 𝑠

2

14 July 2023 27



Outline of FEM convergence proof

Consider the modified finite-dimensional optimization problem:

Find (u∗h, ρ
∗
h) ∈ B ∩ (Vh × Cγ,h) that minimizes Jh(vh, ηh). (*)

2

14 July 2023 27



Numerical examples

10−2

h

10−4

10−3

10−2

‖u
−
u
h
‖ L

2
(Ω

)

L2(Ω)-norm error of the velocity
Straight channels

Double-ended wrench

O(h)

O(h2)

10−2

h

10−1

100

‖u
−
u
h
‖ H

1
(T
h
)

H1(Th)-norm error of the velocity
Straight channels

Double-ended wrench

O(h)

Convergence of the double-pipe problem on a sequence of uniformly refined meshes with a
DG0 × BDM1 ×DG0 discretization for (ρh, uh, ph).
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Numerical examples

10−2

h

10−2‖ρ
−
ρ
h
‖ L

2
(Ω

)

L2(Ω)-norm error of the material distribution
Straight channels

Double-ended wrench

O(h)

10−2

h

10−1

100

101

‖p
−
p h
‖ L

2
(Ω

)

L2(Ω)-norm error of the pressure
Straight channels

Double-ended wrench

O(h)

O(h2)

Convergence of the double-pipe problem on a sequence of uniformly refined meshes with a
DG0 × BDM1 ×DG0 discretization for (ρh, uh, ph).
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Numerical examples

Straight channels Double-ended wrench
h BDM Taylor–Hood BDM Taylor–Hood
4.51× 10−2 1.00× 10−8 2.49× 10−1 2.69× 10−6 3.25× 10−1

2.25× 10−2 6.35× 10−9 1.09× 10−1 2.75× 10−8 1.35× 10−1

1.13× 10−2 1.59× 10−7 3.95× 10−2 2.62× 10−8 4.66× 10−2

5.63× 10−3 4.19× 10−8 1.19× 10−2 1.48× 10−7 1.36× 10−2

2.82× 10−3 4.97× 10−7 3.17× 10−3 2.98× 10−7 3.58× 10−3

Table 1: Reported values for ‖div(uh)‖L2(Ω) in a BDM and Taylor–Hood discretization for the
double-pipe problem as measured on five meshes in a uniformly refined mesh hierarchy.
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Future work
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Conclusions

Solutions of 3D Borrvall–Petersson problems are useful =⇒ requires preconditioners and
low errors =⇒ use a divergence-free DG finite element for the velocity-pressure pair.

This talk outlines the proof of strong convergence for the divergence-free DG
discretization.

Forms the basis for proving useful results including optimal mesh adaptivity strategies and
well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology
optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow

I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022.
https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear
elasticity

I. P, submitted. https://arxiv.org/abs/2211.04249, 2022.
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I. P, E. Süli, Journal of Computational and Applied Mathematics, 2022.
https://doi.org/10.1016/j.cam.2022.114295.

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear
elasticity

I. P, submitted. https://arxiv.org/abs/2211.04249, 2022.

14 July 2023 32

https://doi.org/10.1137/21M1438943
https://doi.org/10.1016/j.cam.2022.114295
https://arxiv.org/abs/2211.04249


Conclusions

Solutions of 3D Borrvall–Petersson problems are useful =⇒ requires preconditioners and
low errors =⇒ use a divergence-free DG finite element for the velocity-pressure pair.

This talk outlines the proof of strong convergence for the divergence-free DG
discretization.

Forms the basis for proving useful results including optimal mesh adaptivity strategies and
well-behaved discretizations.

Numerical analysis of a discontinuous Galerkin method for the Borrvall–Petersson topology
optimization problem

I. P, SIAM Journal on Numerical Analysis, 2022. https://doi.org/10.1137/21M1438943.

Numerical analysis of a topology optimization problem for Stokes flow
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Thank you for listening!

ioannis.papadopoulos13@imperial.ac.uk
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A solver for computing multiple solutions

Deflated barrier method

Continuation scheme + primal-dual active set strategy + deflation
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Construction of deflated problems

A nonlinear transformation of first-order optimality conditions

F(z) = 0→ G(z) :=M(z ; r)F(z) = 0.

A deflation operator

We say that M(z ; r) is a deflation operator if for any sequence z → r

lim inf
z→r

‖G(z)‖ = lim inf
z→r

‖M(z ; r)F(z)‖ > 0.

Theorem

This is a deflation operator for p ≥ 1:

M(z ; r) =

(
1

‖z − r‖p + 1

)
.
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