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The model for representing the topology of the minimizer:

27 N >X

(a) Density. (b) Level-set.

NN

(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund,
2003) has ~ 11,000 citations. Over 20 professional software packages,
consulting firms etc. 3
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Numerical difficulties

Models for topology optimization problems tend to:

e involve PDEs = require a discretization, e.g. the finite element
method (FEM).

e be nonconvex == may support multiple local minima.

Open questions

e What is the best model?

e How do we interpret regions that are neither completely void or
continuum?

e Do discretizations of the models actually converge to the minimizers
of the original problem?

e Are the discretizations well behaved?

e Can we prove error bounds?

e Is there a general framework for proving convergence of FEM to all
(density-based) topology optimization problems?
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MBB beam.

A compliance problem

e Linear elasticity.

e Wish to minimize the compliance of the material (its displacement
due to a force).

e Catch! We only have enough material to occupy 1/2 of the area.

e Requires solving a nonconvex optimzation problem with PDE, box,

and volume constraints.



Topology optimization of elasticity

We are solving for the displacement u € H}(€; RY) and the density
p e 12(2:[0,1])

s >

Displacement: u: Q — R Density: p: Q — [0,1]

MBB Beam



MBB Optimization via LVPP
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The SIMP model

Let k(p) =e+ (1 —¢)pP, e 1, p>1.

Optimization problem

min/ f-uds
u,p I—N

subject to
—dive = 0,
o = k(p)[2uVs(u) + Adiv(u)/] 0<p<lae inQ,
u=20on rD /de§’7|Q’
Q

on=f on OQ\lp.

v and X are the Lamé coefficients, Vs = (V +V")/2, I is the
d x d identity matrix, and -~y is the volume fraction.
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k(p)=e+(1—€)pP, e<1, p=1
Note that k(1) =1 and k(0) = e < 1. So

0~ 2uVs(u) + Adiv(u)! wherever p =1 (high stiffness),

o ~ 0 wherever p = 0 (no stiffness).

Role of the exponent p

Also as p — oo, this promotes p(x) — {0,1}, i.e. the density to
become binary as intermediate regions (where 0 < p < 1)
become increasingly less optimal because p? — 0 as p — oo0. A

very common choice is p = 3.
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The SIMP model

Semi-bilinear form

ay(u,v) = /Q k(p)[2uVs(u) : Vs(v) + Adiv(u)div(v)]dx.

Variational formulation

Find u € H}D(Q)d, p € L>*(Q) that minimizes

min f-uds
u,p rN

subject to, for all v € HE ()7,

aP(“? V) = (fa V)L2(FN)>

0<p<lae inQ, /pde’Y|Q|.
Q



Existence of minimizers

When p > 1, the SIMP model does not guarantee the existence
of a minimizer.
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Existence of minimizers

When p > 1, the SIMP model does not guarantee the existence
of a minimizer.

Consequence

After a FEM discretization, there exists a minimizer, but as
h — 0, we either get checkerboarding, or the beams of the elastic

material become ever-thinner leading to nonphysical solutions in
the limit.

Checkerboarding in the MBB beam. 11
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Strong convergence

z, — z strongly in LI(Q) if lim, oo [|25 — 2||a() = 0.

Weak convergence

z, — z weakly in L9(Q), if forall v e LY(Q), 1/¢' +1/q =1,

/z,,vdx—)/zvdx.
Q Q

Weak-* convergence

z, = z weakly-* in L=(Q), if for all v € L}(Q), [, zavdx — [, zvdx.

Weak convergence #- strong convergence

sin(nx) — 0 weakly in L2([0,27]), but || sin(nx)||i2(jo,0n) =7 V 0 € Z.
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What goes wrong?

Minimizing sequence

Extract a minimizing sequence (up, p,) such that
u, — 0 weakly in H1(Q)?

pn — p weakly-* in L>(Q)

However the weak-* convergence means that

nll_}I’T;O ap,(un, v) # ap(u, v) = (£, V) 2(ry)-

One cannot take the limit in the PDE constraint!

Somehow extract a stronger converging sequence for p,.
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Restriction methods

Sobolev regularization

Modify objective functional. For some 0 < 1 and g € [1, 0],
find (us, ps) minimizing

1)
min f-uds+ —||Vp|9 + rest of constraints.
i | NI

Then we extract a minimizing sequence p, — p weakly in
WL9(Q) = a,,(un,v) — ap(u,v) = (f, V) 2(ry)-
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Restriction methods

Density filtering
Modify PDE constraint. Consider F € W1>(R9), F >0,
”FHLl(]Rd) = I, E.g.

exp(||x2/(20?))
lexp(Il - 12/l

We define the filtered density 5(p) € W1>°(Q) as

F(x) =

o)) = (F % p)(x) = / Flx— y)p(y) dy,

Q
and instead solve
aﬁ(p)(u, V) = (f, V)LZ(FN)-

Then p, = p weakly-* in L®°(Q) = j, — p strongly in L®(Q)
= aﬁn(unv V) - aﬁ(ua V) = (f7 V)LZ(FN)'
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Finite element discretization

Quasi-uniform and non-degenerate triangulation.
Hi={nel™(Q):0<n<1|nllpg <~}
Conforming discretization

up € Xh C Hl(Q)d,

density filtering,

ph € Hp C
Wh9(Q)NH Sobolev regularization.

Discretized filtered density:

Frlon)(x) = My /Q F(x = y)pn(y) dy.
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Sobolev regularization

There exists a minimizer (u, p) and a sequence such that

up — u strongly in H}(Q)9,
pn — p weakly in Wh9(Q),
pr — p strongly in L°(Q2),s € [1, 00).

Open problems

1. What is (u, p)? Is it a local or global minimum? What about
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2. Does pp — p strongly in W19(Q)?



Finite element convergence

Key idea: fix an isolated local minimizer (u, p).

Hp, (Q) x H
i By

2
(u1, p1)

(uo, Po)
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Finite element convergence

Consider the modified finite-dimensional optimization problem:
Find a compliance minimizer (uy, pj,) € B N (X X Hp). *)

(uf, pr) is not computable in practice.

HE (Q) x H

20
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Finite element convergence: Sobolev regularization

Find a discretized compliance minimizer (uj, pj,) € BN (Xh X Hp). (¥)

L weak\y (-*) in HY(Q)? x LX(Q
pi

Unknown weak limits

|dent|fy
Step 2 p
1 page
‘ strongly in HI(Q)”
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Finite element convergence: Sobolev regularization

Find a discretized compliance minimizer (uj, pj,) € BN (Xh X Hp). (¥)

. { weakdy in H1(@)¢ x W HY(@)? x whi(Q
Py ok

Unknown weak limits

identify
sz /A [T /A [

Unknown weak limits

3 strongly in HY(Q)! x L*(Q)

= strongly in W19(Q)
— s

a poge R i Radon—Riesz
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Finite element convergence: Sobolev regularization

Find a discretized compliance minimizer (uy, pj,) € BN ( Xy X Hp). (*)

Strong convergence of u; and pj, lifts the basin of attraction constraint,
i.e. no more dependence on B.
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Finite element convergence: Density filtering

Find a discretized compliance minimizer (uy, py) € BN (Xy x Hp). (¥)

(%) in HY(Q)? x L%(Q) i t

Unknown weak limits

/\
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Finite element convergence: Density filtering

Find a discretized compliance minimizer (uy, py) € BN (Xy x Hp). (¥)

{ weakly(-¥) in HY(Q)¢ x LX(Q)i t
| s

Unknown weak limits

/\

Strong convergence of pj in L°(2), s € [1,00) and g, in WH9(Q) is
subtle.
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Density filtering: strong convergence of pj

e-perturbed problem: find (uc, p) € BN (HY(Q) x H).

* h—0 *
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Density filtering: strong convergence of pj

e-perturbed problem: find (uc, p) € BN (HY(Q) x H).

nJi,?(f’ u)2(ry) + ngHfg(Q) + PDE constraint.

* h—0 *
4)
peh Pe

)

e%OJ/ e—0

*
Ph Koo TP

Figure 5: —: strong convergence in L2(Q).
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Density filtering: strong convergence of pj

e-perturbed problem: find (u, pc) € BN (HY()9 x H)

rgip(f, u)2(ry) + %Hprg(Q) + PDE constraint.

Outline of proof
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Density filtering: strong convergence of pj

e-perturbed problem: find (u, pc) € BN (HY()9 x H)

rgip(f, u)2(ry) + %Hprg(Q) + PDE constraint.

Outline of proof

1. Estimates = p}, — p} strongly in L?(Q) as h — 0.

2. Minimizer = pZ — p, pf, — p}, strongly in L?(Q) as € — 0.
3. Boundedness =-
limp—0 lime—o ||P:,h||L2(Q) = lime0limp_o ”p:,hHLZ(Q)-
4. Interchange of limits = lim,_0 [0}/l 2) = lloll2(0)-
5. Radon—Riesz. (4) + p; — pin L2(Q) = pp — p strongly
in L2(Q).

24



Density filtering: strong convergence of pj

e-perturbed problem: find (u, pc) € BN (HY()9 x H)

Outline of proof

1.
2.
8

rgip(f, u)2(ry) + %Hprg(Q) + PDE constraint.

Estimates = p} , — p! strongly in L*(Q) as h — 0.
Minimizer = p; — p, p; , — p}, strongly in L?(Q) as € — 0.
Boundedness =

limp—0 lime—o ||P:,h||L2(Q) = lime0limp_o ”p:,hHLZ(Q)-
Interchange of limits = im0 [0}l 2Q) = llpll2(0)-
Radon-Riesz. (4) + p; — pin L2(Q) = pp — p strongly
in L2(Q).

Consequence. Strong convergence of u} and pj, lifts the

basin of attraction constraint, i.e. no more dependence on B.
24



Density filtering: strong convergence of p,

e-perturbed problem: find (u, p) € BN (HY()Y x H)

min(f, u)2(r,) + gHVp( )|| o)+ PDE constraint.
u,p

Vin(pt,) —20— Vi(p?)

EAOJ JEHO
v

on(P}) » Vi(p)

h—0
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Density filtering: strong convergence of p,

e-perturbed problem: find (u, p) € BN (HY()Y x H)

min(f, u)2(r,) + gHVp( )|| o)+ PDE constraint.
u,p

Vin(pt,) —20— Vi(p?)

EAOJ JEHO
\Y

pn(P}) » Vi(p)

h—0

One deduces that jp(pn) — 5(p) strongly in W9(Q).
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Conclusions

e All isolated minimizers are approximated by FEM.

Displacements converge strongly u, — u in H(Q)7.

Density filtering: density converges strongly p, — p in L*(Q),
s € [1,00).

Density filtering: filtered density converges strongly gn(pn) — p(p)
in Wha(Q).

Sobolev regularization: density converges strongly p, — p in
Wha(Q).

For more details see:

Numerical analysis of the SIMP model for the topology optimization of

minimizing compliance in linear elasticity
I. P. Numerische Mathematik, 2024,
https://doi.org/10.1007/s00211-024-01438-3.
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Thank you for listening!
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