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Are fractional PDEs physical?

FPDEs describe wave absorption in the brain1.

1
Images from https://clipart.world/brain-clipart/black-and-white-brain-clipart/,

https://www.kindpng.com/imgv/iRoiRR_sound-wave-clipart-ultrasound-ultrasound-clip-art-hd/.
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Fractional PDEs

Observation

Solutions of fractional PDEs are “nonlocal” and may exhibit
singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

A spectral method based on a so-called sum space.
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The problem

The PDE

Find u ∈ Hs(R), s ∈ (0, 1), that satisfies, for λ ∈ R:

(λI + (−∆)s)u = f . (fractional Helmholtz)

H s(R)

We seek solutions u that decay sufficiently quickly as |x | → ∞. In
particular

‖u‖Hs(R) :=

(∫
R
u2 dx +

∫
R

∫
R

|u(x)− u(y)|2

|x − y |1+2s
dxdy

)1/2

<∞.

‖ · ‖Hs(R) interpolates between ‖ · ‖L2(R) and ‖ · ‖H1(R).
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The problem

(−∆)s

Ten (or more) equivalent definitions of the fractional Laplacian
over Rd . E.g. for s ∈ (0, 1),

(−∆)su(x) := cd ,s−
∫
Rd

u(x)− u(y)

|x − y |d+2s
dy

or

F [(−∆)su](ω) = |ω|2sF [u](ω).

We will focus on the special case s = 1/2.
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Singularities and non-locality
The fractional Laplacian is not local. E.g.

Nonlocal

u(x) = 0 for |x | ≥ 1 but (−∆)1/2u(x) 6= 0 for all x ∈ R.

Singularities

As x ↓ 1 and x ↑ −1, then |(−∆)1/2u(x)| → ∞.
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Spectral methods
Consider the ChebyshevT polynomials, denoted Tn(x). These satisfy

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = δnm;T0(x) = 1, T1(x) = x , Tn+1(x) = 2xTn(x)− Tn−1(x).

For x ∈ [−1, 1], consider the approximation: e−x2

sin(x) ≈
∑n

k=0 fkTk(x).
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Dense spectral methods

Many spectral methods for differential equations induce dense
matrices . Consider solving, on [−1, 1],

−u′(x) = f (x), u(−1) = 0.

A spectral method recipe

1 Expand f (x) in the ChebyshevT polynomial basis, truncate,
and collect the coefficients in vector f.

2 Construct the derivative matrix D via a collocation method.
D is dense.

3 Solve Du = f for the coefficients u in the ChebyshevT
expansion of u(x).
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Sparse spectral methods

Let {Un} denote the ChebyshevU polynomials ortho. to
√

1− x2.

An observation

For n ≥ 1, T ′n(x) = nUn−1(x). Or in quasimatrix notation:

(
T ′0(x) T

′
1(x) T

′
2(x) . . .

) 0 1
2

. . .

 = (U0(x) U1(x) U2(x) . . . )

A sparse spectral method recipe (generalizeable to ODEs)

1 Expand f (x) in the ChebyshevU polynomial basis, truncate,
and collect the coefficients in vector f.

2 Construct the derivative matrix D via ChebyshevT/U
relationship. D is sparse with one dense row related to the BC.

3 Solve Du = f for the coefficients u in the ChebyshevT
expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]
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Extended Chebyshev functions

For n ≥ 1,

T̃n(x) :=

{
Tn(x) |x | ≤ 1,

(x − sgn(x)
√
x2 − 1)n |x | > 1.

Ũn(x) :=

{
Un(x) |x | ≤ 1,

2T̃n(x) + Ũn−2(x) |x | > 1.

where Ũ−1(x) :=

{
0 |x | ≤ 1,

− sgn(x)√
x2−1

|x | > 1,
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A sparse spectral method for an FPDE

Wn(x) := (1− x2)
1/2
+ Un(x), Vn(x) := (1− x2)

−1/2
+ Tn(x).

(−∆)1/2

(−∆)1/2Wn(x) = (n + 1)Ũn(x),

(−∆)1/2T̃n(x) = nVn(x).

Identity

Wn(x) =
1

2
[Vn(x)− Vn+2(x)],

T̃n(x) =
1

2
[Ũn(x)− Ũn−2(x)].

Observation: The relationships are banded!

23 August 2023 11



A sparse spectral method for an FPDE

Wn(x) := (1− x2)
1/2
+ Un(x), Vn(x) := (1− x2)

−1/2
+ Tn(x).

(−∆)1/2

(−∆)1/2Wn(x) = (n + 1)Ũn(x),

(−∆)1/2T̃n(x) = nVn(x).

Identity

Wn(x) =
1

2
[Vn(x)− Vn+2(x)],

T̃n(x) =
1

2
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A sparse spectral method for an FPDE

Key idea: use the sum space {T̃n} ∪ {Wn}.

λI + (−∆)1/2

{T̃n} ∪ {Wn}︸ ︷︷ ︸
sum space, S

λI+(−∆)1/2

−−−−−−−−→ {Ũn} ∪ {Vn}︸ ︷︷ ︸
dual sum space, S∗

.

A sparse spectral method recipe

1 Expand f in the dual sum space f (x) ≈ S∗(x)f.

2 Assemble the sparse matrix D induced by (λI + (−∆)1/2).

3 Solve Du = f for the coefficients u, u(x) ≈ S(x)u.
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Expansion of the right-hand side f

Only expand f in V i
n(x) or W i

n via the DCT.

Solve a least squares collocation problem via a truncated
SVD. [Backed by frame theory].

l∞-norm of the coefficient vector for
(1− 2x)e−x

2 − i
x

(
e−x

2 |x | erf(i|x |)
)

+ 2√
π 1F1(1; 1/2;−x2)
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Example: the Gaussian

(I + (−∆)1/2)u(x) = e−x
2

+
2√
π

1F1(1; 1/2;−x2).

1F1 is the Kummer confluent hypergeometric function.

The solution is u(x) = exp(−x2).
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Example: wave propagation

Consider the FPDE (u(x , t)→ 0 as |x | → ∞):

[(−∆)1/2 +H+
∂2

∂t2
]u(x , t) = (1− x2)

1/2
+ U4(x)e−t

2
.

A Fourier transform in time gives (û(x , ω)→ 0 as |x | → ∞):

[(−∆)1/2 +H− ω2]û(x , ω) =
√
π(1− x2)

1/2
+ U4(x)e−ω

2/4.

23 August 2023 15



Example: wave propagation

Consider the FPDE (u(x , t)→ 0 as |x | → ∞):

[(−∆)1/2 +H+
∂2

∂t2
]u(x , t) = (1− x2)

1/2
+ U4(x)e−t

2
.

A Fourier transform in time gives (û(x , ω)→ 0 as |x | → ∞):
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√
π(1− x2)

1/2
+ U4(x)e−ω

2/4.

23 August 2023 15



Conclusions
A sparse spectral method for solving the identity +
sqrt-Laplacian;
Based on a carefully chosen sum space;
Implementation written in Julia see https:

//github.com/ioannisPApapadopoulos/SumSpaces.jl.

A sparse spectral method for fractional differential equations in
one-spacial dimension

I.P., S. Olver, 2022, arXiv preprint arXiv:2210.08247

Ongoing work

Generalization to (−∆)s with s ∈ (0, 1) utilizing
extended/weighted Jacobi polynomials;

Generalization to higher dimensions utilizing
weighted/extended Zernike and ZernikeAnnulus polynomials.
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Thank you for listening!

ioannis.papadopoulos13@imperial.ac.uk
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