23 August 2023

Sparse spectral methods for fractional **PDFs**

ICIAM 2023: CT048

John Papadopoulos¹

Sheehan Olver¹ José Carrillo² Timon Gutleb² Bradley Treeby³

¹Imperial College London; ²University of Oxford; ³UCL

Are fractional PDEs physical?

Imperial College London

FPDEs describe wave absorption in the brain¹.

¹ Images from https://clipart.world/brain-clipart/black-and-white-brain-clipart/, https://www.kindpng.com/imgv/iRoiRR_sound-wave-clipart-ultrasound-ultrasound-clip-art-hd/.

Other applications?

Imperial College London

5 https://planetary-science.org/planetary-science-3/geophysics/

⁶Zhang, Xuefeng, and Wenkai Huang. Fractal and Fractional 4.4 (2020): 50.

Observation

Solutions of fractional PDEs are "nonlocal" and may exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and may exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and may exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Observation

Solutions of fractional PDEs are "nonlocal" and may exhibit singularities.

Consequence

The solutions can be difficult to approximate numerically.

Challenge

How do we compute them with fast convergence?

Our proposal

Imperial College London

The PDE

Find $u \in H^{s}(\mathbb{R})$, $s \in (0, 1)$, that satisfies, for $\lambda \in \mathbb{R}$:

 $(\lambda \mathcal{I} + (-\Delta)^s)u = f.$ (fractional Helmholtz)

$H^{s}(\mathbb{R})$

We seek solutions u that decay sufficiently quickly as $|x| \to \infty.$ In particular

$$\|u\|_{H^{s}(\mathbb{R})} \coloneqq \left(\int_{\mathbb{R}} u^{2} \,\mathrm{d}x + \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|u(x) - u(y)|^{2}}{|x - y|^{1 + 2s}} \,\mathrm{d}x \mathrm{d}y\right)^{1/2} < \infty.$$

 $\|\cdot\|_{H^s(\mathbb{R})}$ interpolates between $\|\cdot\|_{L^2(\mathbb{R})}$ and $\|\cdot\|_{H^1(\mathbb{R})}$.

Imperial College London

The PDE

Find $u \in H^{s}(\mathbb{R})$, $s \in (0, 1)$, that satisfies, for $\lambda \in \mathbb{R}$:

 $(\lambda \mathcal{I} + (-\Delta)^s)u = f.$ (fractional Helmholtz)

$H^{s}(\mathbb{R})$

We seek solutions u that decay sufficiently quickly as $|x| \to \infty$. In particular

$$\|u\|_{H^s(\mathbb{R})} \coloneqq \left(\int_{\mathbb{R}} u^2 \,\mathrm{d}x + \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|u(x) - u(y)|^2}{|x - y|^{1 + 2s}} \,\mathrm{d}x \mathrm{d}y\right)^{1/2} < \infty.$$

 $\|\cdot\|_{H^{s}(\mathbb{R})}$ interpolates between $\|\cdot\|_{L^{2}(\mathbb{R})}$ and $\|\cdot\|_{H^{1}(\mathbb{R})}$.

Imperial College London

$(-\Delta)^s$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s}\mathcal{F}[u](\omega).$$

We will focus on the special case s = 1/2.

Imperial College London

$(-\Delta)^s$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s}\mathcal{F}[u](\omega).$$

We will focus on the special case s = 1/2.

Imperial College London

$(-\Delta)^s$

Ten (or more) equivalent definitions of the fractional Laplacian over \mathbb{R}^d . E.g. for $s \in (0, 1)$,

$$(-\Delta)^{s}u(x) \coloneqq c_{d,s} \oint_{\mathbb{R}^d} \frac{u(x) - u(y)}{|x - y|^{d+2s}} \,\mathrm{d}y$$

or

$$\mathcal{F}[(-\Delta)^{s}u](\omega) = |\omega|^{2s}\mathcal{F}[u](\omega).$$

We will focus on the special case s = 1/2.

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x) = 0$$
 for $|x| \ge 1$ but $(-\Delta)^{1/2}u(x) \ne 0$ for all $x \in \mathbb{R}$.

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x)=0$$
 for $|x|\geq 1$ but $(-\Delta)^{1/2}u(x)
eq 0$ for all $x\in\mathbb{R}.$

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Singularities and non-locality

Imperial College London

The fractional Laplacian is not local. E.g.

Nonlocal

$$u(x)=0$$
 for $|x|\geq 1$ but $(-\Delta)^{1/2}u(x)
eq 0$ for all $x\in\mathbb{R}.$

Singularities

As $x \downarrow 1$ and $x \uparrow -1$, then $|(-\Delta)^{1/2}u(x)| \to \infty$.

Spectral methods

Imperial College London

Consider the *ChebyshevT* polynomials, denoted $T_n(x)$. These satisfy

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = \delta_{nm}; \ T_0(x) = 1, \ T_1(x) = x, \ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

For $x \in [-1, 1]$, consider the approximation: $e^{-x^2} \sin(x) \approx \sum_{k=0}^n f_k T_k(x)$.

Spectral methods

Imperial College London

Consider the *ChebyshevT* polynomials, denoted $T_n(x)$. These satisfy

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = \delta_{nm}; \ T_0(x) = 1, \ T_1(x) = x, \ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

For $x \in [-1, 1]$, consider the approximation: $e^{-x^2} sin(x) \approx \sum_{k=0}^n f_k T_k(x)$.

Spectral methods

Imperial College London

Consider the *ChebyshevT* polynomials, denoted $T_n(x)$. These satisfy

$$\int_{-1}^{1} \frac{T_n(x)T_m(x)}{\sqrt{1-x^2}} \, \mathrm{d}x = \delta_{nm}; \ T_0(x) = 1, \ T_1(x) = x, \ T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x).$$

For $x \in [-1, 1]$, consider the approximation: $e^{-x^2} sin(x) \approx \sum_{k=0}^n f_k T_k(x)$.

Imperial College London

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving, on [-1, 1],

$$-u'(x) = f(x), u(-1) = 0.$$

A spectral method recipe 😂

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Imperial College London

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving, on [-1, 1],

$$-u'(x) = f(x), \ u(-1) = 0.$$

A spectral method recipe 🕽

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via a collocation method. D is dense.
- 3 Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Imperial College London

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving, on [-1, 1],

$$-u'(x) = f(x), \ u(-1) = 0.$$

A spectral method recipe 🕽

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via a collocation method. D is dense.
- 3 Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Imperial College London

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving, on [-1, 1],

$$-u'(x) = f(x), \ u(-1) = 0.$$

A spectral method recipe 🕽

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via a collocation method. D is dense.

Solve Du = f for the coefficients u in the ChebyshevT expansion of u(x).

Imperial College London

Many spectral methods for differential equations induce *dense* matrices \times . Consider solving, on [-1, 1],

$$-u'(x) = f(x), \ u(-1) = 0.$$

A spectral method recipe 🕽

- Expand f(x) in the ChebyshevT polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via a collocation method. D is dense.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x).

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 🗊 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 📴 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) T'_1(x) T'_2(x) \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & \ddots \end{pmatrix} = (U_0(x) U_1(x) U_2(x) \dots)$$

A **sparse** spectral method recipe 📴 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 📴 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 🗊 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 🖾 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- 3 Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, *SIAM Review*, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A sparse spectral method recipe 🛱 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- 3 Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, *SIAM Review*, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A sparse spectral method recipe 🛱 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.

³ Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, *SIAM Review*, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 🖾 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Imperial College London

Let $\{U_n\}$ denote the ChebyshevU polynomials ortho. to $\sqrt{1-x^2}$.

An observation

For $n \ge 1$, $T'_n(x) = nU_{n-1}(x)$. Or in *quasimatrix* notation:

$$(T'_0(x) \ T'_1(x) \ T'_2(x) \ \dots) \begin{pmatrix} 0 & 1 & & \\ & 2 & \\ & & \ddots \end{pmatrix} = (U_0(x) \ U_1(x) \ U_2(x) \ \dots)$$

A **sparse** spectral method recipe 🖾 (generalizeable to ODEs)

- Expand f(x) in the ChebyshevU polynomial basis, truncate, and collect the coefficients in vector f.
- Construct the derivative matrix D via ChebyshevT/U relationship. D is sparse with one dense row related to the BC.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} in the ChebyshevT expansion of u(x). [See S. Olver, A. Townsend, SIAM Review, 2013.]

Extended Chebyshev functions

For
$$n \ge 1$$
,
 $\tilde{T}_n(x) \coloneqq \begin{cases} T_n(x) & |x| \le 1, \\ (x - \operatorname{sgn}(x)\sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$
 $\tilde{U}_n(x) \coloneqq \begin{cases} U_n(x) & |x| \le 1, \\ 2\tilde{T}_n(x) + \tilde{U}_{n-2}(x) & |x| \ge 1. \end{cases}$

where
$$\tilde{U}_{-1}(x) \coloneqq \begin{cases} 0 & |x| \le 1, \\ -\frac{\operatorname{sgn}(x)}{\sqrt{x^2 - 1}} & |x| > 1, \end{cases}$$

Imperial College London

Extended Chebyshev functions

For
$$n \ge 1$$
,
 $\tilde{T}_n(x) \coloneqq \begin{cases} T_n(x) & |x| \le 1, \\ (x - \operatorname{sgn}(x)\sqrt{x^2 - 1})^n & |x| > 1. \end{cases}$

$$\tilde{U}_n(x) := \begin{cases} U_n(x) & |x| \leq 1, \\ 2\tilde{T}_n(x) + \tilde{U}_{n-2}(x) & |x| > 1. \end{cases}$$

where
$$ilde{U}_{-1}(x)\coloneqq egin{cases} 0 & |x|\leq 1, \ -rac{\operatorname{sgn}(x)}{\sqrt{x^2-1}} & |x|>1, \end{cases}$$

Imperial College London

A sparse spectral method for an FPDE Imperial College $W_n(x) \coloneqq (1 - x^2)^{1/2}_+ U_n(x), V_n(x) \coloneqq (1 - x^2)^{-1/2}_+ T_n(x).$ $(-\Delta)^{1/2}$ $(-\Delta)^{1/2} W_n(x) = (n+1)\tilde{U}_n(x),$

$$(-\Delta)^{1/2}\tilde{T}_n(x)=nV_n(x).$$

Identity

$$W_n(x) = \frac{1}{2} [V_n(x) - V_{n+2}(x)],$$

$$\tilde{T}_n(x) = \frac{1}{2} [\tilde{U}_n(x) - \tilde{U}_{n-2}(x)].$$

Observation: The relationships are banded!

A sparse spectral method for an FPDE Imperial College $W_n(x) := (1 - x^2)_+^{1/2} U_n(x), V_n(x) := (1 - x^2)_+^{-1/2} T_n(x).$ $(-\Delta)^{1/2}$ $(-\Delta)^{1/2} W_n(x) = (n+1)\tilde{U}_n(x),$

$$(-\Delta)^{1/2}\tilde{T}_n(x) = nV_n(x).$$

Identity

$$W_n(x) = \frac{1}{2} [V_n(x) - V_{n+2}(x)],$$

$$\tilde{T}_n(x) = \frac{1}{2} [\tilde{U}_n(x) - \tilde{U}_{n-2}(x)].$$

Observation: The relationships are banded!

Key idea: use the sum space $\{\tilde{T}_n\} \cup \{W_n\}$.

 $\lambda I + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n\} \cup \{W_n\}}_{\text{sum space, }S} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{U}_n\} \cup \{V_n\}}_{\text{dual sum space, }S^*}.$$

A sparse spectral method recipe 🖾

- Expand f in the dual sum space $f(x) \approx S^*(x)\mathbf{f}$.
- ② Assemble the sparse matrix D induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} , $u(x) \approx S(x)\mathbf{u}$.

Imperial College

Key idea: use the sum space $\{\tilde{T}_n\} \cup \{W_n\}$.

 $\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n\}\cup\{W_n\}}_{\text{sum space, }S}\xrightarrow{\lambda\mathcal{I}+(-\Delta)^{1/2}}\underbrace{\{\tilde{U}_n\}\cup\{V_n\}}_{\text{dual sum space, }S^*}.$$

A sparse spectral method recipe 🖾

- **1** Expand f in the dual sum space $f(x) \approx S^*(x)\mathbf{f}$.
- ② Assemble the **sparse** matrix D induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2}).$
- **3** Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} , $u(x) \approx S(x)\mathbf{u}$.

Imperial College

Key idea: use the sum space $\{\tilde{T}_n\} \cup \{W_n\}$.

 $\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n\}\cup\{W_n\}}_{\text{sum space, }S}\xrightarrow{\lambda\mathcal{I}+(-\Delta)^{1/2}}\underbrace{\{\tilde{U}_n\}\cup\{V_n\}}_{\text{dual sum space, }S^*}.$$

A sparse spectral method recipe 🖾

- **1** Expand f in the dual sum space $f(x) \approx S^*(x)\mathbf{f}$.
- ② Assemble the **sparse** matrix D induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- **3** Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} , $u(x) \approx S(x)\mathbf{u}$.

Imperial College

Key idea: use the sum space $\{\tilde{T}_n\} \cup \{W_n\}$.

 $\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n\}\cup\{W_n\}}_{\text{sum space, }S}\xrightarrow{\lambda\mathcal{I}+(-\Delta)^{1/2}}\underbrace{\{\tilde{U}_n\}\cup\{V_n\}}_{\text{dual sum space, }S^*}.$$

A sparse spectral method recipe 🖾

- Expand f in the dual sum space $f(x) \approx S^*(x)\mathbf{f}$.
- **2** Assemble the sparse matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- **3** Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} , $u(x) \approx S(x)\mathbf{u}$.

Imperial College

Key idea: use the sum space $\{\tilde{T}_n\} \cup \{W_n\}$.

 $\lambda \mathcal{I} + (-\Delta)^{1/2}$

$$\underbrace{\{\tilde{T}_n\} \cup \{W_n\}}_{\text{sum space, }S} \xrightarrow{\lambda \mathcal{I} + (-\Delta)^{1/2}} \underbrace{\{\tilde{U}_n\} \cup \{V_n\}}_{\text{dual sum space, }S^*}.$$

A sparse spectral method recipe 🖾

- Expand f in the dual sum space $f(x) \approx S^*(x)\mathbf{f}$.
- **2** Assemble the sparse matrix *D* induced by $(\lambda \mathcal{I} + (-\Delta)^{1/2})$.
- Solve $D\mathbf{u} = \mathbf{f}$ for the coefficients \mathbf{u} , $u(x) \approx S(x)\mathbf{u}$.

Imperial College

Expansion of the right-hand side *f*

Imperial College London

- Only expand f in $V_n^i(x)$ or W_n^i via the DCT.
- Solve a least squares collocation problem via a truncated SVD. [Backed by *frame* theory].

 l^{∞} -norm of the coefficient vector for $(1-2x)e^{-x^2} - \frac{i}{x}\left(e^{-x^2}|x|\operatorname{erf}(i|x|)\right) + \frac{2}{\sqrt{\pi}} {}_1F_1(1;1/2;-x^2)$

Example: the Gaussian

Imperial College London

$$(\mathcal{I} + (-\Delta)^{1/2})u(x) = e^{-x^2} + \frac{2}{\sqrt{\pi}} F_1(1; 1/2; -x^2).$$

 $_1F_1$ is the Kummer confluent hypergeometric function.

The solution is $u(x) = \exp(-x^2)$.

Example: the Gaussian

Imperial College London

$$(\mathcal{I} + (-\Delta)^{1/2})u(x) = e^{-x^2} + \frac{2}{\sqrt{\pi}} F_1(1; 1/2; -x^2).$$

 $_1F_1$ is the Kummer confluent hypergeometric function.

The solution is $u(x) = \exp(-x^2)$.

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)_+^{1/2}U_4(x)e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \to 0 \text{ as } |x| \to \infty)$:

23 August 2023

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)^{1/2}_+ U_4(x) e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)_+^{1/2}U_4(x)e^{-\omega^2/4}.$$

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)^{1/2}_+ U_4(x) e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)_+^{1/2}U_4(x)e^{-\omega^2/4}.$$

Example: wave propagation

Consider the FPDE $(u(x, t) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} + \frac{\partial^2}{\partial t^2}]u(x,t) = (1-x^2)^{1/2}_+ U_4(x) e^{-t^2}.$$

A Fourier transform in time gives $(\hat{u}(x,\omega) \rightarrow 0 \text{ as } |x| \rightarrow \infty)$:

$$[(-\Delta)^{1/2} + \mathcal{H} - \omega^2]\hat{u}(x,\omega) = \sqrt{\pi}(1-x^2)^{1/2}_+ U_4(x) e^{-\omega^2/4}.$$

Conclusions

Imperial College London

- A sparse spectral method for solving the identity + sqrt-Laplacian;
- Based on a carefully chosen sum space;
- Implementation written in Julia See https: //github.com/ioannisPApapadopoulos/SumSpaces.jl.

A sparse spectral method for fractional differential equations in one-spacial dimension

I.P., S. Olver, 2022, arXiv preprint arXiv:2210.08247

Ongoing work

- Generalization to (−Δ)^s with s ∈ (0, 1) utilizing extended/weighted Jacobi polynomials;
- Generalization to higher dimensions utilizing weighted/extended Zernike and ZernikeAnnulus polynomials.

Conclusions

Imperial College London

- A sparse spectral method for solving the identity + sqrt-Laplacian;
- Based on a carefully chosen sum space;
- Implementation written in Julia See https: //github.com/ioannisPApapadopoulos/SumSpaces.jl.

A sparse spectral method for fractional differential equations in one-spacial dimension

I.P., S. Olver, 2022, arXiv preprint arXiv:2210.08247

Ongoing work

- Generalization to (−Δ)^s with s ∈ (0, 1) utilizing extended/weighted Jacobi polynomials;
- Generalization to higher dimensions utilizing weighted/extended Zernike and ZernikeAnnulus polynomials.

Conclusions

Imperial College London

- A sparse spectral method for solving the identity + sqrt-Laplacian;
- Based on a carefully chosen sum space;
- Implementation written in Julia See https: //github.com/ioannisPApapadopoulos/SumSpaces.jl.

A sparse spectral method for fractional differential equations in one-spacial dimension

I.P., S. Olver, 2022, arXiv preprint arXiv:2210.08247

Ongoing work

- Generalization to (−Δ)^s with s ∈ (0,1) utilizing extended/weighted Jacobi polynomials;
- Generalization to higher dimensions utilizing weighted/extended Zernike and ZernikeAnnulus polynomials.

Thank you for listening!

 \bowtie ioannis.papadopoulos13@imperial.ac.uk

