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Topology optimization

Objective

Find the optimal distribution of a continuum that minimizes a problem-specific
cost functional with no prior knowledge of the optimal shape or topology.

Aage, Andreassen, Lazarov, Sigmund, Nature (2017)

Models for topology optimization problems tend to:

involve PDEs =⇒ require a discretization;

be nonconvex =⇒ may support multiple local minima.
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Choice of optimization strategy

Observations

Potentially many (local) minimizers.
Millions of degrees of freedom.

Consequences

Require quickly converging algorithms.

Compute multiple minimizers in a systematic manner.

Require preconditioners for the solves e.g. effective multigrid
cycles.

Our proposal

The deflated barrier method.
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The deflated barrier method

Deflated barrier method

Barrier-like terms + primal-dual active set strategy + deflation
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Construction of deflated problems

A nonlinear transformation of first-order optimality conditions

F(z) = 0→ G(z) :=M(z ; r)F(z) = 0.

A deflation operator

We say that M(z ; r) is a deflation operator if for any sequence
z → r

lim inf
z→r

‖G(z)‖ = lim inf
z→r

‖M(z ; r)F(z)‖ > 0.

Theorem

This is a deflation operator for p ≥ 1:

M(z ; r) =

(
1

‖z − r‖p
+ 1

)
.
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Deflation is very easy!

Step 1

Compute the normal undeflated Newton update δz .

Step 2

Let m = m(zk) =M(zk , r). Then the deflated Newton update is

δzD = τ(zk , δz)δz

where

τ(zk , δz) :=

(
1 +

m−1(m′)(δz)

1−m−1(m′)(δz)

)
.
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The Borrvall–Petersson problem

Double-pipe problem

A fluid topology optimization problem

Stokes flow.

Wish to minimize the power dissipation of the flow;

Catch! The channels can occupy up to 1/3 area.

Requires solving a nonconvex optimization problem with PDE, box,
and volume constraints.
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Double-pipe solutions

(a) Straight channels

(b) Double-ended wrench

(c) Neumann (i) (d) Neumann (ii)
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Borrvall & Petersson

Problem
Find velocity u and material distribution ρ that minimize

J(u, ρ) =
1

2

∫
Ω

α(ρ)|u|2 + |∇u|2 − 2f · u dx ,

subject to div(u) = 0, 0 ≤ ρ ≤ 1, and
∫

Ω
ρdx ≤ γ|Ω|.

Deflated barrier method

For µ = µ0 (µ→ 0), solve ∇Lµ(u, ρ, p, λ) “=” 0 with a primal-dual
active set strategy where

Lµ(u, ρ, p, λ) = J(u, ρ)−
∫

Ω

pdiv(u) + λ(γ − ρ)dx

− µ
∫

Ω

log((ρ+ ε)(1 + ε− ρ))dx .
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The deflated barrier method
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A fluid topology optimization problem

Five-holes double-pipe setup.

Fluid topology optimization

Navier–Stokes flow.

Wish to minimize the power dissipation of the flow;

Catch! The channels can occupy up to 1/3 area.
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A fluid topology optimization problem
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Examples

3D discretization on a 40× 40× 40 block ∼ 3,000,000 dofs.

(Stokes) Nevertheless still numerically tractable via preconditioning
techniques implemented with Firedrake

Nested block preconditioning via Schur complements;
Augmented Lagrangian control of the pressure Schur
complement;
Vertex-star patch type relaxation for multigrid schemes.
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3D five-holes quadruple-pipe
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3D five-holes quadruple-pipe
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Further refinement

15,953,537 degrees of freedom.
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More examples

Roller pump
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More examples

MBB beam
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More examples

Double cantilever
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Conclusions

A strategy for computing multiple solutions of topology
optimization problems.

Barrier-like terms + active set strategy + deflation.

Can solve large 3D problems with good preconditioners.

Computing multiple solutions of topology optimization problems

SIAM Journal on Scientific Computing, 43(3) A1555-A1582, 2021.
https://doi.org/10.1137/20M1326209.

Preconditioners for computing multiple solutions in three-dimensional
fluid topology optimization

To appear in the SIAM Journal on Scientific Computing, 2023,
https://arxiv.org/abs/2202.08248.

Numerical analysis of a topology optimization problem for Stokes flow

Journal of Computational and Applied Mathematics, 412 114295, 2022.
https://doi.org/10.1016/j.cam.2022.114295.

https://github.com/ioannisPApapadopoulos/fir3dab.
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Software

Deflated barrier method

https://github.com/ioannisPApapadopoulos/fir3dab.

Deflation

https://github.com/ioannisPApapadopoulos/Deflation.

Deflation for bifurcation diagrams

https://bitbucket.org/pefarrell/defcon.
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Thank you for listening!

ioannis.papadopoulos13@imperial.ac.uk
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