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Problem statement
Let Ω be a disk, annulus or cylinder and λ : Ω → R. We want to find u
satisfying

(−∆+ λ)u = f , u|∂Ω = 0.

A solver that delivers:
■ Fast convergence even with radial discontinuities in f or λ.
■ Symmetric and sparse linear systems.
■ A “fast” O(pd log p) quasi-optimal complexity solve.
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Let Ω = unit disk. Solve

(−∆− 802)u(x , y) = f (x , y) :=

{
2 sin(200x) r ≤ 1/2,

sin(100y) r > 1/2,
+ zero bcs.

(a) f (x , y). (b) u(x , y).

Note the lack of Runge phenomenon or numerical artefacts at r = 0 and r = 1/2.
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Discretization
Approximate the solution u of (−∆+ λ)u = f by solving a finite-dimensional
linear system (A + Mλ)u = b.

Finite element method (FEM)

Pick a finite-dimensional basis {ϕj}.

Aij = (∇ϕj ,∇ϕi)L2(Ω), [Mλ]ij = (ϕj , λϕi)L2(Ω), bi = (f , ϕi)L2(Ω).

A and Mλ are symmetric.

Goal
Pick a FEM basis such that:

■ A and Mλ are sparse even for high p
■ fast convergence

■ fast quasi-optimal quadrature
■ fast quasi-optimal solves
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Begin with adding classical FEM piecewise linear “hat” polynomials.



A hierarchical FEM basis in 1D
CSE25, Fort Worth, Texas, hp-FEM on disks

2025-03-05
5/17

Begin with adding classical FEM piecewise linear “hat” polynomials.



A hierarchical FEM basis in 1D
CSE25, Fort Worth, Texas, hp-FEM on disks

2025-03-05
5/17

Next add quadratic “bubble” polynomials only supported on one element each.
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Then add cubic “bubble” polynomials.
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Then add quartic “bubble” polynomials and so on...
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Zernike polynomials

Zernike polynomials are multivariate polynomials in x and y orthogonal on the
unit disk with respect to (1 − r 2)a for a user-chosen a ≥ 0.

Zernike annular polynomials

Zernike annular polynomials are multivariate polynomials in x and y orthogonal
on the annulus {0 < ρ ≤ r ≤ 1} with respect to (1 − r 2)a(r 2 − ρ2)b for a
user-chosen inner-radius ρ > 0 and a, b ≥ 0.

Fast transforms (2024)

Zernike (annular) polynomials now have fast quasi-optimal complexity
expansion and evaluation transforms via Cholesky and QR factorizations of
tridiagonal Jacobi matrices.
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Disk cell

Inner annulus cell

Outer annulus cell

This mesh combined with Zenrike (an-
nular) polynomials preserves the Four-
ier mode decoupling and captures any
potential radial discontinuities.

Hierarchical FEM basis for disks and annuli
Zernike (annular) polynomials allow one to extend the 1D hats and bubbles
principle to disks and annuli. For each Fourier mode, we can define hat
polynomials supported on a maximum of two cells and high-order bubble
polynomials supported on a maximum of one cell.
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(a) Fourier mode (0, 1) (b) Fourier mode (1, 1)

Slice at θ = 0 of the hat and bubble functions on the unit disk meshed into
{0 ≤ r ≤ 1/2} and {1/2 ≤ r ≤ 1}.
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This hierarchical Zernike FEM basis leads to block-diagonal stiffness/mass
matrices:

A =


A0

A1

. . .

 , M =


M0

M1

. . .

 .

The individual blocks have a sparse arrowhead matrix structure:

(a) A0 + M0 (b) Lower reverse Cholesky factor
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Expansion coefficients of f (x , y): O(np2 log p)

Compute entries of A and Mλ: O(np2)

Solve (A + Mλ)u = b: O(np2)

Evaluate uhp(x , y) on a grid: O(np2 log p)

Overall quasi-optimal complexity: O(np2 log p).
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Let Ω = {1/4 ≤ r ≤ 1}. Find u satisfying −∆u − 802u = f .

f (x , y).

f (x , y) =


2 sin(200y) 1/4 < r ≤ 1/2,

cos(50x) 1/2 < r ≤ 3/4,

sin(100y) 3/4 < r ≤ 1.

3 cells: {1/4 ≤ r ≤ 1/2}, {1/2 ≤ r ≤ 3/4}, and {3/4 ≤ r ≤ 1}.
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Truncation degree, p = 200.
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Let Ω = {0 ≤ r ≤ 50}. Find u satisfying

i∂tu = (−∆+ r 2)u, u(x , y , 0) = ψ20,21(x , y).

We discretize in time with Crank–Nicolson and then mesh the domain into 16
cells with p = 100 on each cell reducing the solve to

(2M + iδt(A + Mr2))uk+1 = (2M − iδt(A + Mr2))uk .

Solution after a full period. Error ≈ 10−6.
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Basis: hp-FEM for disk ⊗ p-FEM 1D basis.
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Let Ω = {0 ≤ r ≤ 1} × [−1, 1]. hp-FEM+ADI: O(np3 log p) solver.

λ(r) =

{
1/2 r < 1/2,

r2 r ≥ 1/2,
(−∆+ λ(r))u =

4 cells: xy -plane {0 ≤ r ≤ 1/2} and {1/2 ≤ r ≤ 1}, z-plane [−1, 0] and [0, 1].

u =

(a) z = −0.18 (b) θ = 0.6
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■ Introduced the first quasi-optimal complexity solver for the Helmholtz problem on the
disk with radial discontinuities in the data.

■ Based on a hierarchical hp-FEM consisting of Zernike (annular) polynomials.
■ The stiffness and mass matrices are block diagonal where each block admits an

optimal complexity factorization.
■ A tensor-product basis constructs a basis for 3D cylinders.
■ Utilizing ADI provides the first fast solver for the screened Poisson equation with

discontinuous data in 3D cylinders.
■ Can handle inhomogeneous Dirichlet/Neumann/mixed boundary conditions.

Extensions
fractional wave propagation, Schrödinger equation, eigenvalue problems.

Manuscript
I. P. A. Papadopoulos, S. Olver, A sparse hierarchical hp-finite element method on disks
and annuli, https://arxiv.org/abs/2402.12831 (2024).

https://arxiv.org/abs/2402.12831
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Thank you for listening!

papadopoulos@wias-berlin.de


