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Pointwise constraints appear everywhere, e.g. contact mechanics
(non-penetration), stress constraints in elasticity, sandpile growth, financial
mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term f ∈ L2(Ω) and an obstacle φ ∈ H1(Ω), the obstacle
problem seeks u : Ω → R minimizing the Dirichlet energy

min
u∈H1

0 (Ω)

∫
Ω

1
2
|∇u|2 − fu dx subject to u(x) ≤ φ(x) for almost every x ∈ Ω.

■ primal-dual active set, multigrid,
finite-dimensional constrained optimizers (often
mesh dependent, confined to low-order1).

■ penalty methods (infeasible solutions,
suboptimal for high-order, ill-conditioning).

1With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).
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LVPP is a new and powerful framework for solving variational problems with pointwise
constraints (https://arxiv.org/abs/2503.05672).

Obstacle, u ≤ φ.

Gradient-type, |∇u| ≤ φ. Signorini, (u · n)|Γ ≥ 0. Thermoforming, u ≤ φ(u).

Cahn–Hilliard,
ui ≥ 0,

∑
i ui = 1.

Eikonal, |∇u| = 1. Harmonic map, |u| = 1. Fracture.

https://arxiv.org/abs/2503.05672
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Consider the constrained optimization problem:

min
u∈U

J(u) subject to Bu(x) ∈ C(x) for a.e. x ∈ Ω.

Examples

■ (Obstacle problem.) Find u : Ω → R

min
u∈H1

0 (Ω)

∫
Ω

1
2
|∇u|2 − fu dx subject to u(x) ≤ φ(x).

■ (Elastic-plastic torsion.) Find u : Ω → R,

min
u∈H1

0 (Ω)

∫
Ω

1
2
|∇u|2 − fu dx subject to |∇u|(x) ≤ φ(x).
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Obstacle problem

Given ψk−1 ∈ L∞(Ω), for k = 1, 2, . . . , we seek (uk , ψk ) satisfying

−αk∆uk + ψk = αk f + ψk−1,

uk + e−ψ
k
= φ.

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain and
φ ∈ {ϕ ∈ H1(Ω) ∩ C(Ω̄) : ∆ϕ ∈ L∞(Ω)}, then

∥u∗ − uk∥H1(Ω) ≲

 k∑
j=1

αj

−1/2

.

Note that uk → u∗ in H1(Ω) even if αk = 1 for all k ∈ N.
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Elastic-plastic torsion problem

Given ψk−1, for k = 1, 2, . . . , we seek (uk , ψk ) satisfying

−αk∆uk − divψk = αk f − divψk−1,

uk −
φψk√

1 + |ψk |2
= 0.

min
u∈U

J(u) subject to Bu(x) ∈ C(x) for a.e. x ∈ Ω.

General LVPP subproblems

Given ψk−1, for k = 1, 2, . . . , we seek (uk , ψk ) satisfying

αk J′(uk ) + B∗ψk = B∗ψk−1 in U∗

Buk − G(ψk ) = 0 a.e.,

where
∑∞

j=1 αj → ∞ and G is a pointwise operator chosen such that G−1(Bu)(x) → ∞
as Bu(x) → ∂C(x).

E.g. G(ψ) = φ− e−ψ =⇒ G−1(id u)(x) = − log(φ(x)− u(x)) → ∞ as u(x) → φ(x).
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1. It has an infinite-dimensional formulation.
2. Observed discretization-independent number of linear system solves.
3. A simple mechanism for enforcing pointwise constraints on the

discrete level (without the need for a projection).
4. Ease of implementation — the algorithm reduces to the repeated

solve of a smooth nonlinear system of PDEs without requiring
specialized discretizations.

5. Robust numerical performance since convergence occurs as αk can
be kept small.
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A “high-order” discretization is one where we are approximating the solution with
piecewise polynomials of high degree, e.g. p ≥ 4.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped
convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.



High-order finite element methods
WIAS Group 3 Seminar, Berlin, Hierarchical proximal Galerkin

2025-03-13
10/28

A “high-order” discretization is one where we are approximating the solution with
piecewise polynomials of high degree, e.g. p ≥ 4.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped
convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.



High-order finite element methods
WIAS Group 3 Seminar, Berlin, Hierarchical proximal Galerkin

2025-03-13
10/28

A “high-order” discretization is one where we are approximating the solution with
piecewise polynomials of high degree, e.g. p ≥ 4.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped
convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.



Weak form and a finite element discretization
WIAS Group 3 Seminar, Berlin, Hierarchical proximal Galerkin

2025-03-13
11/28

Weak form of LVPP for the obstacle problem

The k th LVPP subproblem seeks (uk , ψk ) ∈ H1
0 (Ω)× L∞(Ω) satisfying for all

(v , q) ∈ H1
0 (Ω)× L∞(Ω):

αk (∇uk ,∇v) + (ψk , v) = αk (f , v) + (ψk−1, v)

(uk , q) + (e−ψ
k
, q) = (φ, q).

FEM discretization

Pick finite-dimensional spaces Vhp ⊂ H1
0 (Ω), Qhp ⊂ L∞(Ω) and seek

(uk
hp, ψ

k
hp) ∈ Vhp × Qhp satisfying for all (vhp, qhp) ∈ Vhp × Qhp:

αk (∇uk
hp,∇vhp) + (ψk

hp, vhp) = αk (f , vhp) + (ψk−1
hp , vhp)

(uk
hp, qhp) + (e−ψ

k
hp , qhp) = (φ, qhp).

Nonlinear system of equations... use Newton!
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In matrix-vector form we are solving(
αk A B
B⊤ −Dψk

)(
δu

δψ

)
=

(
bu

bψ

)
,

where for basis function ϕi ∈ Vhp and ζi ∈ Qhp,

Aij = (∇ϕi ,∇ϕj), Bij = (ϕi , ζj), and [Dψ]ij = (ζi , e
−ψhpζj).

Goal
Pick FEM bases {ϕi} ⊂ Vhp and {ζj} ⊂ Qhp that contain high-degree
polynomials but also

■ Keep A, B and Dψ sparse.
■ Allow for fast assembly or action of Dψ.

use a discontinuous piecewise Legendre polynomial basis for ψhp and the
(Babuška–Szabó) hierarchical continuous p-FEM basis for uhp.
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1D, 5 cells, p = 10.

(a) A (b) Lrchol (c) B (d) Dψ (e) Permuted Dψ

2D, 25 cells, p = 5.

(f) A (g) Lchol (h) B (i) Dψ (j) Permuted Dψ
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Ω = (0,1), f (x) = 200π2 sin(10πx), φ ≡ 1.

min
u∈H1

0 (Ω)

∫
Ω

1
2
|∇u|2 − fu dx subject to u(x) ≤ φ(x).
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Cholesky factorization for the reduced PDAS stiffness matrix.
LU factorization for LVPP Newton systems with α1 = 2−7, αk+1 = min(

√
2αk , 2−3) and

terminate once αk = αk−1 = 2−3. LVPP solver exhibits hp-independence (20-30
Newton linear system solves).
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Ω = (0,1)2, f (x , y) = 100, and φ(x , y) = (1 + J0(20x))(1 + J0(20y)),

where J0 denotes the zeroth order Bessel function of the first kind.
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Recall we are repeatedly solving (where Aα := αA)(
Aα B
B⊤ −Dψ

)(
δu

δψ

)
=

(
bu

bψ

)
.

Schur complement factorization

A Schur complement factorization reveals that

δu = A−1
α (bu − Bδψ) and δψ = S−1(bψ − B⊤A−1

α bu),

where S := −(Dψ + B⊤A−1
α B).

Advantages

Aα and B are sparse and Aα admits a cheap Cholesky factorization
that we only compute once.
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Complication

S = −(Dψ + B⊤A−1
α B) is dense — it cannot be assembled and

factorized quickly.

However, given a vector y we may compute Sy efficiently.

Iterative solver
Solve Sδψ = (bψ − B⊤A−1

α bu) with GMRES preconditioned with a
block-diagonal Schur complement approximation Ŝ.

We choose
Ŝ := −(Dψ + B̂⊤Â−1

α B̂)

where Âα and B̂ are the block-diagonal matrices associated with the
basis functions {ϕi} ⊂ Vhp where the hat functions have been dropped.
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Ŝ := −(Dψ + B̂⊤Â−1
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(a) Schur complement S (b) Block-diagonal approximation Ŝ
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The thermoforming quasi-variational inequality seeks u minimizing

min
u∈H1

0 (Ω)

∫
Ω

1
2
|∇u|2 − fu dx subject to u ≤ φ(T ) := Φ0 + ξT , (1)

where Φ0 and ξ are given and T satisfies

−∆T + γT = g(Φ0 + ξT − u), ∂νT = 0 on ∂Ω. (2)

Solver strategy

We will solve the thermoforming problem via a fixed point approach,
i.e. repeatedly solve
1. Freeze T and solve the obstacle subproblem (1) for u,
2. Freeze u and solve the nonlinear PDE (2) for T .
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Ω = (0, 1)2
, f (x, y) = 100, ξ(x, y) = sin(πx) sin(πy), γ = 1,

Φ0(x, y) = 11/10 − 2 max(|x − 1/2|, |y − 1/2|) + cos(8πx) cos(8πy)/10,

g(s) =


1/5 if s ≤ 0,
(1 − s)/5 if 0 < s < 1,
0 otherwise.
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p-independent Newton and preconditioned GMRES iteration counts to solve
the thermoforming problem. Unbelievable!
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preconditioned 
GMRES iterations 
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Partial degree

Outer loop

Average Newton 
steps to solve an 
obstacle 
subproblem

Average 
preconditioned 
GMRES iterations 
per Newton step 
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steps to solve a 
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■ Pointwise constraints can be effectively handled by the latent variable proximal point
algorithm resulting in a nonlinear system of smooth PDEs.

■ The PDE system is linearized with Newton.
■ For the obstacle problem, the nonlinearity is confined to the latent variable ψ which

can be discretized with a high-order Legendre polynomial DG FEM space that admits
fast quadrature via the FFT.

■ We discretize the membrane u with the hierarchical continuous p-FEM basis.
■ This leads to sparse linear systems which admit simple preconditioners.
■ This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, The
latent variable proximal point algorithm for variational problems with inequality constraints
(2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

I. P, Hierarchical proximal Galerkin: a fast hp-FEM solver for variational problems with
pointwise inequality constraints (2024), https://arxiv.org/abs/2412.13733.

https://arxiv.org/abs/2503.05672
https://arxiv.org/abs/2412.13733
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Code availability

https://github.com/ioannisPApapadopoulos/

HierarchicalProximalGalerkin.jl .

Do you...

■ have a problem with pointwise constraints and are looking for a robust
solver?

■ have ideas for high-order FEM on more general domains?
■ have an interest in the infinite-dimensional or numerical analysis of LVPP?

Then please email me at papadopoulos@wias-berlin.de.

https://github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.jl
https://github.com/ioannisPApapadopoulos/HierarchicalProximalGalerkin.jl
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Thank you for listening!

papadopoulos@wias-berlin.de
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