

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints John Papadopoulos¹ ¹Weierstrass Institute Berlin,

March 13, 2025, WIAS Group 3 Seminar, Berlin

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

 $\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x \text{ subject to } u(x) \leq \varphi(x) \text{ for almost every } x \in \Omega.$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning)

¹With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

 $\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2-\mathit{f} u\,\mathrm{d} x \ \text{ subject to } u(x)\leq \varphi(x) \text{ for almost every } x\in\Omega.$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{f} u\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x) \; \text{for almost every}\; x\in \Omega.$$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

¹With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

Obstacle, $u \leq \varphi$.

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

Cahn–Hilliard, $u_i \ge 0, \sum_i u_i = 1.$

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

WI AS

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

WI

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

WI

Contact problems

Contact problems

Problems of interest

Consider the constrained optimization problem:

 $\min_{u\in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x \text{ subject to } u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x \; \text{ subject to } |\nabla u|(x) \leq \varphi(x).$$

Problems of interest

Consider the constrained optimization problem:

```
\min_{u\in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.
```

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{fu}\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H^1_0(\Omega)} \int_\Omega \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d} x \; \; \mathsf{subject to} \; |\nabla u|(x) \leq \varphi(x).$$

Problems of interest

Consider the constrained optimization problem:

```
\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.
```

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u\in H_0^1(\Omega)}\int_{\Omega}\frac{1}{2}|\nabla u|^2-fu\,\mathrm{d} x \ \text{ subject to } u(x)\leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_\Omega \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d} x \; \; \text{subject to} \; |\nabla u|(x) \leq \varphi(x).$$

Obstacle problem

The LVPP algorithm

Given $\psi^{k-1} \in L^{\infty}(\Omega)$, for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{split} -\alpha_k \Delta u^k + \psi^k &= \alpha_k f + \psi^{k-1}, \\ u^k + \mathrm{e}^{-\psi^k} &= \varphi. \end{split}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain and $\varphi \in \{\phi \in H^1(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|\boldsymbol{u}^*-\boldsymbol{u}^k\|_{H^1(\Omega)}\lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Note that $u^k \to u^*$ in $H^1(\Omega)$ even if $\alpha_k = 1$ for all $k \in \mathbb{N}$.

WAS

Obstacle problem

The LVPP algorithm

Given $\psi^{k-1} \in L^{\infty}(\Omega)$, for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$-\alpha_k \Delta u^k + \psi^k = \alpha_k f + \psi^{k-1},$$
$$u^k + e^{-\psi^k} = \varphi.$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain and $\varphi \in \{\phi \in H^1(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|\boldsymbol{u}^*-\boldsymbol{u}^k\|_{H^1(\Omega)}\lesssim \left(\sum_{j=1}^k\alpha_j\right)^{-1/2}$$

Note that $u^k \to u^*$ in $H^1(\Omega)$ even if $\alpha_k = 1$ for all $k \in \mathbb{N}$.

Elastic-plastic torsion problem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{aligned} &-\alpha_k \Delta u^k - \operatorname{div} \psi^k = \alpha_k f - \operatorname{div} \psi^{k-1}, \\ &u^k - \frac{\varphi \psi^k}{\sqrt{1+|\psi^k|^2}} = 0. \end{aligned}$$

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

General LVPP subproblems

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\alpha_k J'(u_k) + B^* \psi^k = B^* \psi^{k-1} \text{ in } U^*$$
$$Bu^k - G(\psi^k) = 0 \text{ a.e.},$$

where $\sum_{j=1}^{\infty} \alpha_j \to \infty$ and *G* is a pointwise operator chosen such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

E.g. $G(\psi) = \varphi - e^{-\psi} \implies G^{-1}(\operatorname{id} u)(x) = -\log(\varphi(x) - u(x)) \to \infty \text{ as } u(x) \to \varphi(x).$

Elastic-plastic torsion problem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{split} &-\alpha_k \Delta u^k - \operatorname{div} \psi^k = \alpha_k f - \operatorname{div} \psi^{k-1}, \\ &u^k - \frac{\varphi \psi^k}{\sqrt{1 + |\psi^k|^2}} = 0. \end{split}$$

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

General LVPP subproblems

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\alpha_k J'(u_k) + B^* \psi^k = B^* \psi^{k-1} \text{ in } U^*$$
$$Bu^k - G(\psi^k) = 0 \text{ a.e.},$$

where $\sum_{j=1}^{\infty} \alpha_j \to \infty$ and *G* is a pointwise operator chosen such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

 $\mathsf{E.g.}\ G(\psi) = \varphi - \mathrm{e}^{-\psi} \implies G^{-1}(\mathrm{id}\ u)(x) = -\log(\varphi(x) - u(x)) \to \infty \text{ as } u(x) \to \varphi(x).$

Elastic-plastic torsion problem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{split} &-\alpha_k \Delta u^k - \operatorname{div} \psi^k = \alpha_k f - \operatorname{div} \psi^{k-1}, \\ &u^k - \frac{\varphi \psi^k}{\sqrt{1 + |\psi^k|^2}} = 0. \end{split}$$

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

General LVPP subproblems

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\alpha_k J'(u_k) + B^* \psi^k = B^* \psi^{k-1} \text{ in } U^*$$
$$Bu^k - G(\psi^k) = 0 \text{ a.e.},$$

where $\sum_{j=1}^{\infty} \alpha_j \to \infty$ and *G* is a pointwise operator chosen such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

E.g. $G(\psi) = \varphi - e^{-\psi} \implies G^{-1}(\operatorname{id} u)(x) = -\log(\varphi(x) - u(x)) \to \infty \text{ as } u(x) \to \varphi(x).$

Elastic-plastic torsion problem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{split} &-\alpha_k \Delta u^k - \operatorname{div} \psi^k = \alpha_k f - \operatorname{div} \psi^{k-1}, \\ &u^k - \frac{\varphi \psi^k}{\sqrt{1 + |\psi^k|^2}} = 0. \end{split}$$

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

General LVPP subproblems

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\alpha_k J'(u_k) + B^* \psi^k = B^* \psi^{k-1} \text{ in } U^*$$
$$Bu^k - G(\psi^k) = 0 \text{ a.e.},$$

where $\sum_{j=1}^{\infty} \alpha_j \to \infty$ and *G* is a pointwise operator chosen such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

 $\mathsf{E.g.}\ G(\psi) = \varphi - \mathrm{e}^{-\psi} \implies G^{-1}(\mathrm{id}\ u)(x) = -\log(\varphi(x) - u(x)) \to \infty \text{ as } u(x) \to \varphi(x).$

W

Advantages of the LVPP algorithm

1. It has an infinite-dimensional formulation.

- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs without requiring specialized discretizations.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.

High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.

High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.

Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the FFT.

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$egin{aligned} &lpha_k(
abla u^k,
abla v) + (\psi^k, v) = lpha_k(f, v) + (\psi^{k-1}, v) \ &(u^k, q) + (\mathrm{e}^{-\psi^k}, q) = (arphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$\begin{aligned} \alpha_k (\nabla u_{hp}^k, \nabla v_{hp}) + (\psi_{hp}^k, v_{hp}) &= \alpha_k (f, v_{hp}) + (\psi_{hp}^{k-1}, v_{hp}) \\ (u_{hp}^k, q_{hp}) + (\mathrm{e}^{-\psi_{hp}^k}, q_{hp}) &= (\varphi, q_{hp}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$egin{aligned} &lpha_k(
abla u^k,
abla v) + (\psi^k, v) = lpha_k(f, v) + (\psi^{k-1}, v) \ &(u^k, q) + (\mathrm{e}^{-\psi^k}, q) = (arphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$egin{aligned} &lpha_k(
abla U_{hp}^k,
abla v_{hp}) + (\psi_{hp}^k, v_{hp}) = lpha_k(f, v_{hp}) + (\psi_{hp}^{k-1}, v_{hp}) \ & (U_{hp}^k, q_{hp}) + (\mathrm{e}^{-\psi_{hp}^k}, q_{hp}) = (arphi, q_{hp}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$egin{aligned} &lpha_k(
abla u^k,
abla v) + (\psi^k, v) = lpha_k(f, v) + (\psi^{k-1}, v) \ &(u^k, q) + (\mathrm{e}^{-\psi^k}, q) = (arphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$egin{aligned} &lpha_k(
abla u_{hp}^k,
abla v_{hp}) + (\psi_{hp}^k, v_{hp}) = lpha_k(f, v_{hp}) + (\psi_{hp}^{k-1}, v_{hp}) \ & (u_{hp}^k, q_{hp}) + (\mathrm{e}^{-\psi_{hp}^k}, q_{hp}) = (arphi, q_{hp}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$m{A}_{ij} = (
abla \phi_i,
abla \phi_j), \ \ m{B}_{ij} = (\phi_i, \zeta_j), \ \ ext{and} \ \ [D_\psi]_{ij} = (\zeta_i, \mathrm{e}^{-\psi_{hp}} \zeta_j).$$

Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_{ψ} .

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$m{A}_{ij} = (
abla \phi_i,
abla \phi_j), \ \ m{B}_{ij} = (\phi_i, \zeta_j), \ \ ext{and} \ \ [D_\psi]_{ij} = (\zeta_i, \mathrm{e}^{-\psi_{hp}} \zeta_j).$$

Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_ψ.

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$m{A}_{ij} = (
abla \phi_i,
abla \phi_j), \ \ m{B}_{ij} = (\phi_i, \zeta_j), \ \ ext{and} \ \ [D_\psi]_{ij} = (\zeta_i, \mathrm{e}^{-\psi_{hp}} \zeta_j).$$

Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_ψ.

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale cubic polynomial $P_3(x)$ and so on...

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale cubic polynomial $P_3(x)$ and so on...

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^{1} P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{nm}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

Shift-and-scale cubic polynomial $P_3(x)$ and so on...

We need a continuous FEM basis for *u*:

WM

We need a continuous FEM basis for *u*:

Begin with adding classical FEM piecewise linear "hat" polynomials.

We need a continuous FEM basis for *u*:

Begin with adding classical FEM piecewise linear "hat" polynomials.

WЛ

We need a continuous FEM basis for *u*:

Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:

Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:

Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:

Then add cubic "bubble" polynomials.

We need a continuous FEM basis for *u*:

Then add cubic "bubble" polynomials.

WI AS

We need a continuous FEM basis for *u*:

Then add cubic "bubble" polynomials.

WI AS

We need a continuous FEM basis for *u*:

Then add quartic "bubble" polynomials and so on...

We need a continuous FEM basis for *u*:

Then add quartic "bubble" polynomials and so on...

We need a continuous FEM basis for *u*:

Then add quartic "bubble" polynomials and so on...

Sparsity of *A*, *B* and D_{ψ}

Sparsity of *A*, *B* and D_{ψ}

$$\begin{split} \Omega &= (0,1), \quad f(x) = 200\pi^2 \sin(10\pi x), \quad \varphi \equiv 1, \\ \min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \; \; \text{subject to} \; u(x) \leq \varphi(x). \end{split}$$

Cholesky factorization for the reduced PDAS stiffness matrix. .U factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2\alpha_k})^2$ erminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-

lewton linear system solves).

2025-03-13 17/28

Cholesky factorization for the reduced PDAS stiffness matrix.

LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).

2025-03-13 17/28

Cholesky factorization for the reduced PDAS stiffness matrix.

LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).

Cholesky factorization for the reduced PDAS stiffness matrix.

LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).

2025-03-13 17/28

Example: oscillatory obstacle

$$\Omega = (0,1)^2$$
, $f(x,y) = 100$, and $\varphi(x,y) = (1 + J_0(20x))(1 + J_0(20y))$,

where J_0 denotes the zeroth order Bessel function of the first kind.

Example: oscillatory obstacle

Example: oscillatory obstacle

W

Example: oscillatory obstacle

W

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \pmb{A}_{\alpha} & \pmb{B} \\ \pmb{B}^{\top} & -\pmb{D}_{\psi} \end{pmatrix} \begin{pmatrix} \pmb{\delta}_{u} \\ \pmb{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \pmb{b}_{u} \\ \pmb{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{lpha}^{-1} (oldsymbol{b}_u - B \delta_\psi)$$
 and $\delta_\psi = S^{-1} (oldsymbol{b}_\psi - B^ op A_{lpha}^{-1} oldsymbol{b}_u),$

where $S \coloneqq -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$.

Advantages

 A_{α} and *B* are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-03-13 20/28

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \pmb{A}_{\alpha} & \pmb{B} \\ \pmb{B}^{\top} & -\pmb{D}_{\psi} \end{pmatrix} \begin{pmatrix} \pmb{\delta}_{u} \\ \pmb{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \pmb{b}_{u} \\ \pmb{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{lpha}^{-1} (oldsymbol{b}_u - B \delta_\psi) ext{ and } \delta_\psi = S^{-1} (oldsymbol{b}_\psi - B^ op A_{lpha}^{-1} oldsymbol{b}_u),$$

where $S \coloneqq -(D_{\psi} + B^{\top}A_{\alpha}^{-1}B).$

Advantages

 A_{α} and *B* are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-03-13 20/28

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \pmb{A}_{\alpha} & \pmb{B} \\ \pmb{B}^{\top} & -\pmb{D}_{\psi} \end{pmatrix} \begin{pmatrix} \pmb{\delta}_{u} \\ \pmb{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \pmb{b}_{u} \\ \pmb{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{\alpha}^{-1} (\boldsymbol{b}_u - B \delta_{\psi}) \text{ and } \delta_{\psi} = S^{-1} (\boldsymbol{b}_{\psi} - B^{\top} A_{\alpha}^{-1} \boldsymbol{b}_u),$$

where
$$\boldsymbol{S} \coloneqq -(\boldsymbol{D}_{\psi} + \boldsymbol{B}^{\top} \boldsymbol{A}_{\alpha}^{-1} \boldsymbol{B}).$$

Advantages

 A_{α} and *B* are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-03-13 20/28

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - B^{\top}A_{\alpha}^{-1}\boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \hat{S} .

We choose

$$\hat{S} \coloneqq -(D_{\psi} + \hat{B}^{ op} \hat{A}_{lpha}^{-1} \hat{B})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - B^{\top}A_{\alpha}^{-1}\boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \hat{S} .

We choose

$$\hat{S} \coloneqq -(D_{\psi} + \hat{B}^{ op} \hat{A}_{lpha}^{-1} \hat{B})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - \boldsymbol{B}^{\top} \boldsymbol{A}_{\alpha}^{-1} \boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \hat{S} .

We choose

$$\hat{\mathbf{S}} \coloneqq -(D_{\psi} + \hat{B}^{ op} \hat{A}_{lpha}^{-1} \hat{B})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - B^{\top} A_{\alpha}^{-1} \boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \hat{S} .

We choose

$$\hat{\mathbf{S}} \coloneqq -(\mathbf{D}_\psi + \hat{\mathbf{B}}^ op \hat{\mathbf{A}}_lpha^{-1} \hat{\mathbf{B}})$$

WIAS Group 3 Seminar, Berlin, Hierarchical proximal Galerkin

Schur complement approximation

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
 (

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

1. Freeze T and solve the obstacle subproblem (1) for u,

2. Freeze u and solve the nonlinear PDE (2) for T.

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
(2)

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

1. Freeze T and solve the obstacle subproblem (1) for u,

2. Freeze u and solve the nonlinear PDE (2) for T.

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
(2)

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

- 1. Freeze T and solve the obstacle subproblem (1) for u,
- 2. Freeze u and solve the nonlinear PDE (2) for T.

$$\begin{split} \Omega &= (0,1)^2, \quad f(x,y) = 100, \quad \xi(x,y) = \sin(\pi x)\sin(\pi y), \quad \gamma = 1, \\ \Phi_0(x,y) &= 11/10 - 2\max(|x-1/2|, |y-1/2|) + \cos(8\pi x)\cos(8\pi y)/10, \\ g(s) &= \begin{cases} 1/5 & \text{if } s \leq 0, \\ (1-s)/5 & \text{if } 0 < s < 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

WI AS

$$\begin{split} \Omega &= (0,1)^2, \quad f(x,y) = 100, \quad \xi(x,y) = \sin(\pi x)\sin(\pi y), \quad \gamma = 1, \\ \Phi_0(x,y) &= 11/10 - 2\max(|x-1/2|, |y-1/2|) + \cos(8\pi x)\cos(8\pi y)/10, \\ g(s) &= \begin{cases} 1/5 & \text{if } s \leq 0, \\ (1-s)/5 & \text{if } 0 < s < 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

2025-03-13 24/28

WI AS

WI AS

Example: thermoforming

		Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T	
р	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00

		Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T		
p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES	
6	4	15.00	11.00	1.50	2.83	
12	4	15.25	15.85	2.00	3.13	
22	4	16.00	19.36	2.00	3.00	
32	4	16.00	21.09	2.00	3.00	
42	4	15.75	21.75	2.25	3.11	
52	4	15.00	22.40	2.00	3.00	
62	4	15.00	21.90	2.00	3.00	
72	4	15.00	21.90	2.00	3.00	
82	4	15.25	21.61	2.00	3.00	
•						

Partial degree

Exan

Example: thermoforming

			Obstacle su	ubsolve for u	Nonlinear subsolve for T		
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES	
	6	4	15.00	11.00	1.50	2.83	
	12	4	15.25	15.85	2.00	3.13	
	22	4	16.00	19.36	2.00	3.00	
	32	4	16.00	21.09	2.00	3.00	
	42	4	15.75	21.75	2.25	3.11	
	52	4	15.00	22.40	2.00	3.00	
	62	4	15.00	21.90	2.00	3.00	
	72	4	15.00	21.90	2.00	3.00	
	82	4	15.25	21.61	2.00	3.00	
	1	Î Î					
Partial	Partial degree						
Outer loop							

			Obstasla si	hachie fer u	Nonlinger of	ubaalua far T
			Obstacle st		Nonlinear st	
	р	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	1	1	1		
Average						
Partial	degre	e A	verage Newton	preconditioned		
	Outer loop steps to solve an GMRES iterations					

p-independent Newton and preconditioned GMRES iteration counts to solve the thermoforming problem. <u>Unbelievable!</u>

obstacle subproblem per Newton step

E:

Example: thermoforming

			Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T	
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	1	. ↓	Average	<u> </u>	Average
Partial degr		ee Outer loop	Average Newton steps to solve an obstacle subproblem	preconditioned GMRES iteration per Newton step	Average Newl Is steps to solve temperature F subproblem	a GMRES iteration

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order Legendre polynomial DG FEM space that admits fast quadrature via the FFT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order Legendre polynomial DG FEM space that admits fast quadrature via the FFT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order Legendre polynomial DG FEM space that admits fast quadrature via the FFT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order Legendre polynomial DG FEM space that admits fast quadrature via the FFT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order Legendre polynomial DG FEM space that admits fast quadrature via the FFT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

Code availability

https://github.com/ioannisPApapadopoulos/ HierarchicalProximalGalerkin.jl **Q**.

Do you...

- have a problem with pointwise constraints and are looking for a robust solver?
- have ideas for high-order FEM on more general domains?
- have an interest in the infinite-dimensional or numerical analysis of LVPP?

Then please email me at \square papadopoulos@wias-berlin.de.

Code availability

https://github.com/ioannisPApapadopoulos/ HierarchicalProximalGalerkin.jl **Q**.

Do you...

- have a problem with pointwise constraints and are looking for a robust solver?
- have ideas for high-order FEM on more general domains?
- have an interest in the infinite-dimensional or numerical analysis of LVPP?

Then please email me at ⊠ papadopoulos@wias-berlin.de.

Code availability

https://github.com/ioannisPApapadopoulos/ HierarchicalProximalGalerkin.jl **Q**.

Do you...

- have a problem with pointwise constraints and are looking for a robust solver?
- have ideas for high-order FEM on more general domains?

Code availability

https://github.com/ioannisPApapadopoulos/ HierarchicalProximalGalerkin.jl **Q**.

Do you...

- have a problem with pointwise constraints and are looking for a robust solver?
- have ideas for high-order FEM on more general domains?
- have an interest in the infinite-dimensional or numerical analysis of LVPP?

Then please email me at \square papadopoulos@wias-berlin.de.

Code availability

https://github.com/ioannisPApapadopoulos/ HierarchicalProximalGalerkin.jl **Q**.

Do you...

- have a problem with pointwise constraints and are looking for a robust solver?
- have ideas for high-order FEM on more general domains?
- have an interest in the infinite-dimensional or numerical analysis of LVPP?

Then please email me at \square papadopoulos@wias-berlin.de.

Thank you for listening!

⊠ papadopoulos@wias-berlin.de

