The latent variable proximal point algorithm for variational problems with inequality constraints

John Papadopoulos¹, Jørgen Dokken², Patrick Farrell³, Brendan Keith⁴, Thomas Surowiec² ¹Weierstrass Institute Berlin, ²Simula, ³Oxford, ⁴Brown

June 26, 2025, 30th Biennial Numerical Analysis Meeting

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Optimization problem

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for almost every } x \in \Omega.$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

¹With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Optimization problem

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for almost every } x \in \Omega.$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

¹ With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Optimization problem

 $\min_{u \in U} J(u)$ subject to $Bu(x) \in C(x)$ for almost every $x \in \Omega$.

1D obstacle problem

 primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).

 penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Optimization problem

 $\min_{u \in U} J(u)$ subject to $Bu(x) \in C(x)$ for almost every $x \in \Omega$.

1D obstacle problem

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

¹With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

WI

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H^1_0(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2-\mathit{fu}\,\mathrm{d} x\;\;\text{subject to}\;u(x)\leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d} x \; \text{ subject to } |\nabla u|(x) \leq \varphi(x).$$

• (Signorini.) Find $u: \Omega \to \mathbb{R}^d$,

 $\min_{u \in H^1_g(\Omega)^d} \int_{\Omega} \frac{1}{2} (\mathbf{C}\varepsilon(u)) : \varepsilon(u) - f \cdot u \, \mathrm{d}x \text{ subject to } u \cdot \tilde{n} \ge 0 \text{ on } \Gamma_{\mathcal{T}}.$

WI

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{fu}\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d} x \; \text{ subject to } |\nabla u|(x) \leq \varphi(x).$$

• (Signorini.) Find $u: \Omega \to \mathbb{R}^d$,

 $\min_{u \in H^1_g(\Omega)^d} \int_{\Omega} \frac{1}{2} (\mathbf{C}\varepsilon(u)) : \varepsilon(u) - f \cdot u \, \mathrm{d}x \text{ subject to } u \cdot \tilde{n} \ge 0 \text{ on } \Gamma_{\mathcal{T}}.$

WI

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{fu}\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H^1_0(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d} x \; \text{ subject to } |\nabla u|(x) \leq \varphi(x).$$

• (Signorini.) Find $u: \Omega \to \mathbb{R}^d$,

 $\min_{u \in H^1_g(\Omega)^d} \int_{\Omega} \frac{1}{2} (\mathbf{C}\varepsilon(u)) : \varepsilon(u) - f \cdot u \, \mathrm{d}x \; \text{ subject to } u \cdot \tilde{n} \ge 0 \text{ on } \Gamma_T.$

Latent variable proximal point (LVPP) blueprint

LVPP is a new and powerful framework for solving variational problems with pointwise constraints.

Variational problem with inequality constraints

Apply LVPP: sequence of nonlinear systems of PDEs

Discretize: sequence of nonlinear systems of equations

Newton solver

Latent variable proximal point (LVPP) blueprint

LVPP is a new and powerful framework for solving variational problems with pointwise constraints.

Variational problem with inequality constraints

Apply LVPP: sequence of nonlinear systems of PDEs

Discretize: sequence of nonlinear systems of equations

Newton solver

 $\min_{u\in U} J(u) \text{ subject to } u \in \mathcal{K} := \{ v : (Bv)(x) \in \mathcal{C}(x) \text{ for a.e. } x \in \Omega \}.$

Bregman proximal point

First regularize the optimization problem via a *Bregman divergence*:

$$\min_{u \in U} J(u) + \frac{1}{\alpha} \int_{\Omega_d} R(Bu) - R(Bu^{k-1}) - \nabla R(Bu^{k-1})(Bu - Bu^{k-1}) \, \mathrm{d}\mathcal{H}_d \quad (\mathsf{BD})$$

The (classical) Bregman proximal point algorithm seeks $u^k \in K$ satisfying the *smooth* PDE:

$$\alpha_k \langle J'(u^k), v \rangle + \langle \nabla R(Bu^k) - \nabla R(Bu^{k-1}), Bv \rangle = 0 \quad \forall v \in U.$$
 (BPP)

 $\min_{u\in U} J(u) \text{ subject to } u \in \mathcal{K} \coloneqq \{v : (Bv)(x) \in \mathcal{C}(x) \text{ for a.e. } x \in \Omega\}.$

Bregman proximal point

First regularize the optimization problem via a Bregman divergence:

$$\min_{u \in U} J(u) + \frac{1}{\alpha} \int_{\Omega_d} R(Bu) - R(Bu^{k-1}) - \nabla R(Bu^{k-1})(Bu - Bu^{k-1}) \, \mathrm{d}\mathcal{H}_d \quad (\mathsf{BD})$$

The (classical) Bregman proximal point algorithm seeks $u^k \in K$ satisfying the *smooth* PDE:

$$\alpha_k \langle J'(u^k), v \rangle + \langle \nabla R(Bu^k) - \nabla R(Bu^{k-1}), Bv \rangle = 0 \quad \forall v \in U.$$
 (BPP)

 $\min_{u\in U} J(u) \text{ subject to } u \in \mathcal{K} \coloneqq \{v : (Bv)(x) \in \mathcal{C}(x) \text{ for a.e. } x \in \Omega\}.$

Bregman proximal point

First regularize the optimization problem via a Bregman divergence:

$$\min_{u \in U} J(u) + \frac{1}{\alpha} \int_{\Omega_d} R(Bu) - R(Bu^{k-1}) - \nabla R(Bu^{k-1})(Bu - Bu^{k-1}) \, \mathrm{d}\mathcal{H}_d \quad (\mathsf{BD})$$

The (classical) Bregman proximal point algorithm seeks $u^k \in K$ satisfying the *smooth* PDE:

$$\alpha_k \langle J'(u^k), v \rangle + \langle \nabla R(Bu^k) - \nabla R(Bu^{k-1}), Bv \rangle = 0 \quad \forall v \in U.$$
 (BPP)

 $\min_{u\in U} J(u) \text{ subject to } u \in \mathcal{K} \coloneqq \{v : (Bv)(x) \in \mathcal{C}(x) \text{ for a.e. } x \in \Omega\}.$

Bregman proximal point

First regularize the optimization problem via a Bregman divergence:

$$\min_{u \in U} J(u) + \frac{1}{\alpha} \int_{\Omega_d} R(Bu) - R(Bu^{k-1}) - \nabla R(Bu^{k-1})(Bu - Bu^{k-1}) \, \mathrm{d}\mathcal{H}_d \quad (\mathsf{BD})$$

The (classical) Bregman proximal point algorithm seeks $u^k \in K$ satisfying the *smooth* PDE:

$$\alpha_k \langle J'(u^k), v \rangle + \langle \nabla R(Bu^k) - \nabla R(Bu^{k-1}), Bv \rangle = 0 \quad \forall v \in U.$$
 (BPP)

Introduce a latent variable $\psi = \nabla R(Bu)$ and reformulate the primal equation (BPP) as a saddle point system.

The LVPP subproblem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$\begin{aligned} \alpha_k \langle J'(u^k), v \rangle + \langle \psi^k, Bv \rangle &= \langle \psi^{k-1}, Bv \rangle \ \, \forall v \in U, \\ Bu^k - (\nabla R)^{-1}(\psi^k) &= 0 \text{ a.e.}, \end{aligned}$$

- Pick proximal parameters α_k such that $\sum_{j=1}^k \alpha_j \to \infty$.
- Pick pointwise operator $(\nabla R)^{-1}$ such that $\nabla R(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

Generates two distinct approximations for Bu: Bu^k and $(\nabla R)^{-1}(\psi^k)$ (always feasible even after discretization).

Introduce a latent variable $\psi = \nabla R(Bu)$ and reformulate the primal equation (BPP) as a saddle point system.

The LVPP subproblem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$lpha_k \langle J'(u^k), v \rangle + \langle \psi^k, Bv \rangle = \langle \psi^{k-1}, Bv \rangle \ \, \forall v \in U,$$

 $Bu^k - (\nabla R)^{-1}(\psi^k) = 0 \text{ a.e.},$

- Pick proximal parameters α_k such that $\sum_{j=1}^k \alpha_j \to \infty$.
- Pick pointwise operator $(\nabla R)^{-1}$ such that $\nabla R(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

Generates two distinct approximations for Bu: Bu^k and $(\nabla R)^{-1}(\psi^k)$ (always feasible even after discretization).

Introduce a latent variable $\psi = \nabla R(Bu)$ and reformulate the primal equation (BPP) as a saddle point system.

The LVPP subproblem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying

$$lpha_k \langle J'(u^k), v \rangle + \langle \psi^k, Bv \rangle = \langle \psi^{k-1}, Bv \rangle \ \, \forall v \in U,$$

 $Bu^k - (\nabla R)^{-1}(\psi^k) = 0 \text{ a.e.},$

- Pick proximal parameters α_k such that $\sum_{j=1}^k \alpha_j \to \infty$.
- Pick pointwise operator $(\nabla R)^{-1}$ such that $\nabla R(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

Generates two distinct approximations for *Bu*: Bu^k and $(\nabla R)^{-1}(\psi^k)$ (always feasible even after discretization).

Feasible set K	В	$(\nabla R)^{-1}(\psi)$
$\{u \ge \phi\}$	id	$\phi + \exp \psi$
$\left\{\phi_1 \le u \le \phi_2\right\}$	id	$\frac{\phi_1 + \phi_2 \exp \psi}{1 + \exp \psi}$
$\big\{\operatorname{tr} {\textit{u}} \geq \phi\big\}$	tr	$\phi + \exp \psi$
$\big\{(\operatorname{tr} {\it u})\cdot {\it n} \leq \phi\big\}$	$tr(\cdot) \cdot n$	$\phi - \exp(-\psi)$
$\big\{ \nabla u \le \phi\big\}$	∇	$\frac{\phi\psi}{\sqrt{1+ \psi ^2}}$
$\left\{ u \geq 0, \ \sum_{i} u_{i} = 1 \right\}$	id	$\frac{\exp\psi}{\sum_{i}\exp\psi_{i}}$
$\left\{ \det(abla^2 u) \geq 0 \right\}$	∇^2	$\exp\psi$

2025-06-26 7/19

Obstacle problem: weak formulation of LVPP

 $\begin{aligned} \boldsymbol{U} &= \boldsymbol{H}_0^1(\Omega), \boldsymbol{B} = \boldsymbol{B}^* = \mathrm{id}, \boldsymbol{J}' = -\Delta - \boldsymbol{f}, \text{ and } (\nabla \boldsymbol{R})^{-1}(\psi) = \varphi - \mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1} \in L^{\infty}(\Omega), \text{ for } k = 1, 2, \dots, \text{ we seek } (\boldsymbol{u}^k, \psi^k) \text{ satisfying, for all } (\boldsymbol{v}, \boldsymbol{q}) \in \boldsymbol{H}_0^1(\Omega) \times L^{\infty}(\Omega), \end{aligned}$

$$\alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) = \alpha_k(f, v) + (\psi^{k-1}, v),$$
$$(u^k, q) + (e^{-\psi^k}, q) = (\varphi, q).$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^* - u^k\|_{H^1(\Omega)} \lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Obstacle problem: weak formulation of LVPP

 $\begin{array}{l} U=H_0^1(\Omega), B=B^*=\mathrm{id}, J'=-\Delta-f, \text{ and } (\nabla R)^{-1}(\psi)=\varphi-\mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1}\in L^\infty(\Omega), \text{ for } k=1,2,\ldots, \text{ we seek } (u^k,\psi^k) \text{ satisfying, for all } (v,q)\in H_0^1(\Omega)\times L^\infty(\Omega), \end{array}$

$$\alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) = \alpha_k(f, v) + (\psi^{k-1}, v),$$
$$(u^k, q) + (e^{-\psi^k}, q) = (\varphi, q).$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^* - u^k\|_{H^1(\Omega)} \lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Obstacle problem: weak formulation of LVPP

 $\begin{array}{l} U=H_0^1(\Omega), B=B^*=\mathrm{id}, J'=-\Delta-f, \text{ and } (\nabla R)^{-1}(\psi)=\varphi-\mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1}\in L^\infty(\Omega), \text{ for } k=1,2,\ldots, \text{ we seek } (u^k,\psi^k) \text{ satisfying, for all } (\nu,q)\in H_0^1(\Omega)\times L^\infty(\Omega), \end{array}$

$$\begin{aligned} \alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) &= \alpha_k(f, v) + (\psi^{k-1}, v), \\ (u^k, q) + (\mathrm{e}^{-\psi^k}, q) &= (\varphi, q). \end{aligned}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^* - u^k\|_{H^1(\Omega)} \lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Obstacle problem: weak formulation of LVPP

 $\begin{array}{l} U=H_0^1(\Omega), B=B^*=\mathrm{id}, J'=-\Delta-f, \text{ and } (\nabla R)^{-1}(\psi)=\varphi-\mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1}\in L^\infty(\Omega), \text{ for } k=1,2,\ldots, \text{ we seek } (u^k,\psi^k) \text{ satisfying, for all } (v,q)\in H_0^1(\Omega)\times L^\infty(\Omega), \end{array}$

$$\begin{aligned} \alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) &= \alpha_k(f, v) + (\psi^{k-1}, v), \\ (u^k, q) + (\mathrm{e}^{-\psi^k}, q) &= (\varphi, q). \end{aligned}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^* - u^k\|_{H^1(\Omega)} \lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Obstacle, $u \leq \varphi$.

Obstacle, $u \leq \varphi$. Gradient-type, $|\nabla u| \leq \varphi$.

Cahn–Hilliard, $u_i \ge 0, \sum_i u_i = 1.$

Contact problems

Contact problems

Obstacle problem solver comparisons

	D	egree p =	= 1	Degree p = 2		
Method	h	h/2	h/4	h	h/2	h/4
LVPP	15	13	12	15	16	12
Active Set (PETSc)	11	16	25			
Trust-Region (Galahad)	6	12	19	Not bound		d
Interior Point (IPOPT)	9	9	8	preserving		
IPOPT without Hessian	90	260	500			

(a) Number of linear system solves for popular solvers using various mesh sizes h.

(b) Obstacle ϕ (grey) and membrane *u* (red/blue).

Obstacle problem solver comparisons

	D	egree p =	= 1	Degree p = 2		
Method	h	h/2	h/4	h	h/2	h/4
LVPP	15	13	12	15	16	12
Active Set (PETSc)	11	16	25			
Trust-Region (Galahad)	6	12	19	Not bound		d
Interior Point (IPOPT)	9	9	8	preserving		
IPOPT without Hessian	90	260	500			

(a) Number of linear system solves for popular solvers using various mesh sizes h.

Mesh size h	2 ⁻¹	2 ⁻²	2 ⁻³	2 ⁻⁴	2 ⁻⁵	2 ⁻⁶
Finite Difference	10	15	13	15	16	16
Degree p	8	16	24	32	40	48
Spectral Method	16	17	16	16	16	15

(b) Obstacle ϕ (grey) and membrane u (red/blue).

(c) Number of linear system solves for the proximal finite difference and spectral methods.

The thermoforming quasi-variational inequality seeks $u: \Omega \to \mathbb{R}$ minimizing

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \text{ subject to } u \le \varphi(T) := \Phi_0 + \xi T, \tag{1a}$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \beta T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
 (1b)

LVPP subproblem

Given ψ^{k-1} , we seek (u^k, T^k, ψ^k) satisfying for all $(v, q, w) \in H^1_0(\Omega) \times L^{\infty}(\Omega) \times H^1(\Omega)$

$$(\nabla T^k, \nabla q) + \beta(T^k, q) = (g(\mathrm{e}^{-\psi^k}), q),$$
(2a)

$$\alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) = \alpha_k(f, v) + (\psi^{k-1}, v),$$
(2b)

$$(u^k, w) + (e^{-\psi^k}, w) = (\Phi_0 + \xi T^k, w).$$
 (2c)

The thermoforming quasi-variational inequality seeks $u: \Omega \to \mathbb{R}$ minimizing

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \text{ subject to } u \le \varphi(T) \coloneqq \Phi_0 + \xi T, \tag{1a}$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \beta T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
 (1b)

LVPP subproblem

Given ψ^{k-1} , we seek (u^k, T^k, ψ^k) satisfying for all $(v, q, w) \in H^1_0(\Omega) \times L^{\infty}(\Omega) \times H^1(\Omega)$

$$(\nabla T^k, \nabla q) + \beta(T^k, q) = (g(\mathrm{e}^{-\psi^k}), q),$$
(2a)

$$\alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) = \alpha_k(f, v) + (\psi^{k-1}, v),$$
(2b)

$$(u^k, w) + (e^{-\psi^k}, w) = (\Phi_0 + \xi T^k, w).$$
 (2c)

The thermoforming quasi-variational inequality seeks $u: \Omega \to \mathbb{R}$ minimizing

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \text{ subject to } u \le \varphi(T) \coloneqq \Phi_0 + \xi T, \tag{1a}$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \beta T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial \Omega.$$
 (1b)

LVPP subproblem

Given ψ^{k-1} , we seek (u^k, T^k, ψ^k) satisfying for all $(v, q, w) \in H_0^1(\Omega) \times L^{\infty}(\Omega) \times H^1(\Omega)$

$$(\nabla T^k, \nabla q) + \beta(T^k, q) = (g(\mathrm{e}^{-\psi^k}), q),$$
(2a)

$$\alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) = \alpha_k(f, v) + (\psi^{k-1}, v),$$
(2b)

$$(u^k, w) + (e^{-\psi^k}, w) = (\Phi_0 + \xi T^k, w).$$
 (2c)

Solver	Outer loop	Linear system solves	Run time (s)
LVPP	13	20	61.70
Moreau–Yosida Penalty	14	51	78.01
Semismooth Active Set	7	236	112.60
Fixed Point	164	8493	3633.72

The performance of four solvers, terminating when $||u^k - u^{k-1}||_{H^1(\Omega)} \le 10^{-5}$.

W

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, to appear in CMAME (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

 Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.

- LVPP is discretization agnostic.

- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, to appear in CMAME (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, to appear in CMAME (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, to appear in CMAME (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, to appear in CMAME (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, *to appear in CMAME* (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. • https://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, *to appear in CMAME* (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. Ohttps://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

- Many pointwise constraints can be effectively handled by LVPP resulting in a nonlinear system of smooth PDEs.
- LVPP is discretization agnostic.
- · Observed discretization-independent number of linear system solves.
- LVPP has a simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- Robust numerical performance since convergence occurs even α_k is kept small.

The latent variable proximal point algorithm for variational problems with inequality constraints, *to appear in CMAME* (2025)

J. Dokken, P. Farrell, B. Keith, I. P., T. Surowiec, https://arxiv.org/abs/2503.05672. Ohttps://github.com/METHODS-Group/ProximalGalerkin

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints (2024)

Thank you for listening!

⊠ papadopoulos@wias-berlin.de

High-order FEM discretizations

Observations

- 1. LVPP is discretization agnostic \rightarrow use sparsity-preserving high-order FEM.
- 2. After a Newton linearization & FEM discretization we are solving linear saddle point systems.
- 3. These admit block preconditioners with sparse Schur complement approximations.

High-order FEM discretizations

Observations

- 1. LVPP is discretization agnostic \rightarrow use sparsity-preserving high-order FEM.
- 2. After a Newton linearization & FEM discretization we are solving linear saddle point systems.
- 3. These admit block preconditioners with sparse Schur complement approximations.

High-order FEM discretizations

Observations

- 1. LVPP is discretization agnostic \rightarrow use sparsity-preserving high-order FEM.
- 2. After a Newton linearization & FEM discretization we are solving linear saddle point systems.
- 3. These admit block preconditioners with sparse Schur complement approximations.

		Obstacle su	ubsolve for u	Nonlinear su	ubsolve for T
р	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00

		Obstacle su	ubsolve for u	Nonlinear su	ubsolve for T
p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00
•					

Partial degree

			Obstacle subsolve for <i>u</i>		Nonlinear su	ubsolve for T
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	Î. Î				
Partial degree						
Outer loop						

			Obstacle su	ubsolve for <i>u</i>	Nonlinear si	ubsolve for T
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	Î	Î.	Average		
Partial degree Av Outer loop ste ob su			Average Newton steps to solve an obstacle subproblem	GMRES iteration per Newton step	IS	

			Obstacle su	Obstacle subsolve for u		ubsolve for T
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	1	1	Average	1 I	Average
Partial	degre	ee / / Outer loop	Average Newton steps to solve an obstacle subproblem	preconditioned GMRES iteration per Newton step	Average New ns steps to solve temperature F subproblem	ton preconditioned a GMRES iterations DE per Newton step

