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Abstract

The tau-method is an extensive technique for enforcing very general boundary condi-

tions as well as continuity across cells in numerical methods. It is the technique employed

by Dedalus, a parallelised software for spectral methods, and is implicitly utilized in the

ultraspherical method of Olver and Townsend. In these notes we give a numerical linear

algebra perspective on how to implement a tau-method which may be helpful for beginners

to build an intuition.

This is a memo, i.e. notes on a mathematical topic that the author has encountered. These

notes are not peer-reviewed and may contain errors. If you find any, please let me know!

1 Introduction

Discretizing a linear partial differential equation (PDE) with a spectral method typically leads

to a square linear system. The boundary conditions of the original PDE are then added as

additional constraints: one per boundary condition. Hence, one arrives at an overdetermined

(more rows than columns) system. The tau-method remedies this issue by introducing as many

new unknowns as equations. Hence, the discretization matrix gains new columns and the linear

system becomes square once more.

The tau-method is dated back to Lanczos [3] and Ortiz [5]. More modern techniques, often

referred to as generalized tau-methods [1], are an area of active research. There is no systematic

methodology of choosing the τ -functions for enforcing the boundary conditions; this fact is

reflected in the implementation setup of Dedalus, where it is the responsibility of the user to

specify a choice [2].

Given a linear PDE, the tau-method appends the PDE with τ -functions which are polyno-

mials. By doing so, one ensures that the augmented equation has polynomial solutions. The

purpose of these notes is not to delve into the technical aspects of how tau-methods work, their

conditioning, or attempt any unifying theory. Moreover, we emphasize that none of what follows

is novel. The goal is to give a numerical linear algebra flavour that may be useful to any reader

who is coding their first tau-method.

In these notes we solely focus on coefficient-based spectral methods. For linear ODEs/PDEs

with (potentially spatially-varying) coefficients possessing high regularity, such methods typically

lead to very sparse and almost-banded systems [2, 4].
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2 A simple Poisson problem

In this section, we assume that the reader has some familiarity with the ultraspherical method

[4] and quasimatrices. Suppose we wish to solve the following Poisson’s equation on the interval

[−1, 1]:

d2u

dx2
(x) = f(x), u(±1) = 0. (2.1)

We discretize (2.1) via the ultraspherical method. Consider the expansion of u(x) in the Cheby-

shev polynomials of the first kind , Tn(x), n ∈ N0, as well as an expansion of f(x) in ultraspher-

ical(2) polynomials, C
(2)
n (x), n ∈ N0 [4, Sec. 3]:

u(x) = T(x)u and f(x) = C(2)(x)f . (2.2)

Consider the truncation of the expansion at degree N − 1. Let TN (x) and uN denote the

truncation of the infinite-dimensional quasimatrix and vector at column and row N , respectively,

i.e.

TN (x) :=
(
T0(x) T1(x) · · · TN−1(x)

)
, (2.3)

uN :=
(
u0 u1 · · · uN−1

)>
. (2.4)

Then the discretization of (2.1) may be rewritten in quasimatrix notation as

DNuN = fN , TN (±1)uN = 0, (2.5)

where DN ∈ RN×N is [4, Sec. 3]

DN =



0 0 4

6

8
. . .

2N + 2

0 0 0 0 0 · · · 0

0 0 0 0 0 · · · 0


. (2.6)

DN is square (albeit singular) but only enforces the discretized PDE on the coefficients of the

expansion but not the boundary conditions. Hence, the boundary conditions must be included

as two additional constraints. We concatenate these two additional constraints as two rows at

the top of the DN leading to the rectangular system (two more rows than columns)

ANuN = (0 0 f>N )>, AN :=

−1 1 −1 1 · · · (−1)N

1 1 1 1 · · · 1

DN

 . (2.7)

In the ultraspherical method one truncates the final two rows of zeroes in AN to form a

square system once more and solves for uN . The spy plot of the truncated AN is given in Fig. 1.

This truncation has provably controllable conditioning [4, Thm. 4.5]. Note that for more general
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Figure 1: Spy plot of the truncated AN as implemented in the ultraspherical method, N = 19.

ODEs, the last two rows will not necessarily have zero entries. It happens that the truncation of

these final two rows is equivalent to using a tau-method to enforce the boundary condition where

the two τ -functions (one for each boundary condition) are the polynomials τ1(x) = C
(2)
N−2(x) and

τ2(x) = C
(2)
N−1(x).

The tau-method augments the equation in (2.1) with two polynomials multiplied by the

unknown constants c1 and c2 forming the equation

d2u

dx2
(x) + c1τ1(x) + c2τ2(x) = f(x), u(±1) = 0. (2.8)

By truncating the expansions of u and f at degree N − 1 and picking the aforementioned τ -

functions, the discretized problem now becomes to find the solution (u>N c1 c2)> to the problem:
−1 1 −1 1 · · · (−1)N 0 0

1 1 1 1 · · · 1 0 0
...

...

DN 1 0

0 1


uN

c1
c2

 =

 0

0

fN

 . (2.9)

The spy plot of the linear system matrix is given in Fig. 2a. Since the final two rows of DN are

zero, it immediately follows that c1 = fN−2 and c2 = fN−1. Thus one may eliminate c1 and c2
from the linear system matrix. This results in removing the last two columns and rows and thus

recovering the usual ultraspherical method linear system.

Suppose we picked different τ -functions, then we would have not been able to eliminate the

final two rows and columns. For example, suppose that τ1(x) = TN−2(x) and τ2(x) = TN−1(x).

Consider the connection matrix R such that T(x) = C(2)(x)R. Then the discretization becomes
−1 1 −1 1 · · · (−1)N 0 0

1 1 1 1 · · · 1 0 0

DN (ReN−1)N (ReN )N .


uN

c1
c2

 =

 0

0

fN

 , (2.10)
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where en denotes the infinitely long vector of zeroes with a single one in the position n. The

spy plot of the linear system matrix is given in Fig. 2b. Here the values of c1 and c2 cannot

immediately deduced and one must solve the whole system (2.10) for the unknowns uN .

(a) τ -functions: C
(2)
N−2(x) and C

(2)
N−1(x).

(b) τ -functions: TN−2(x) and TN−1(x).

Figure 2: Spy plots of the tau-method column-augmented AN , N = 19.

Remark 2.1 (Why not solve for the least-squares solution?). Indeed - why not? One may

disperse with tau-methods entirely and simply find a least-squares solution to the overdetermined

system. For this particular example, the least-squares solution is, in fact, equal to the normal

ultraspherical solution.

For more general problems, provided N � 0 is sufficiently large, then often the least-squares

solutions are vanishingly close to the solution of discretization coupled with a working tau-method.

For finite N , the least-squares solution is allowed to violate the boundary conditions. However,

in general this violation tends quickly tends to machine precision for increasing N .

Nevertheless, there are disadvantages. Good choices of tau-methods allow one to recover

banded and sparse systems (perhaps after utilizing a Schur complement factorization). Hence,

one may develop optimal complexity solvers with significantly more ease. Furthermore, there are

no guarantees for the behavior of the least-squares solution and the conditioning of the problem

may be deteriorate quickly as N →∞.

3 The column nullspace

The correct choice of τ -functions may be elusive. This is particularly the case when one is

enforcing continuity conditions across cells in a spectral element method in non-standard bases.

A certainty is that there should always be as many τ -functions as boundary conditions. Hence we

are required to add as many new columns as there are rows enforcing the boundary conditions.

One desires to concatenate new columns that do not negatively impact the conditioning of the

system as N →∞.

Thus a good proxy is to compute new columns that are orthonormal to the rest, e.g. by

computing nullspace of the transpose of the rectangular system. In the case of (2.7) we (unsur-
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prisingly) find that

nullspace


−1 1 −1 1 · · · (−1)N

1 1 1 1 · · · 1

DN

>
 =


0 0

0 0
...

...

1 0

0 1

 . (3.1)

Hence, we may deduce from the column nullspace that a good choice of τ -functions are C
(2)
N−2(x)

and C
(2)
N−1(x).

For more general problems, by examining the columns of the nullspace, then with some luck

all the entries of each nullspace column will be close to machine precision. Those which are not

close to machine precision informs us of a good choice for the columns we concatenate to the

least-squares system and implicitly the choice of the τ -functions. In particular, one may deduce

for the τ -functions for a small value of N and thus deduce what they are as N →∞.

3.1 A screened-Poisson example

We provide an example where we utilize the column nullspace trick to deduce a a good choice of

τ -functions for a screened Poisson equation:

−d2u

dx2
(x) + u(x) = f(x), u(±1) = 0. (3.2)

After truncating at degree polynomial N − 1 we recover the overdetermined system

BNuN = (0 0 f>N )>, BN :=

−1 1 −1 1 · · · (−1)N

1 1 1 1 · · · 1

−DN +RN

 . (3.3)

We give the spy plot of the matrix BN defined in (3.3) in Fig. 3. The ultraspherical method

would truncate the last two rows of BN . But unlike the Poisson example, these two rows are not

identically zero. Thus it is not clear that this is the optimal choice.

By examining the column nullspace of B>N , we recover a two-dimensional nullspace. In Fig. 4

we plot the magnitude of the 22 entries of each column (where we have chosen the truncation

degree N = 19). We see that almost all entries are close to machine precision except one for each

column. Upon further examination, those entries correspond to the τ -functions τ1(x) = C
(2)
N−2(x)

and τ2(x) = C
(2)
N−1(x): the same τ -functions as in the Poisson example.

4 Code

Checkout tau-method.jl for a supplementary Julia script to these notes.
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Figure 3: Spy plot of the matrix BN defined in (3.3), N = 19.

Figure 4: Magnitude of the entries of the two column vectors of nullspace(B>N ) when N =

19. Upon further examination, the two nonzero entries correspond to the τ -functions τ1(x) =

C
(2)
N−2(x) and τ2(x) = C

(2)
N−1(x): the same τ -functions as in the Poisson example.
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