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Topology optimization

(a) TO of compliance. (b) TO of compliance.

(c) TO of power

dissipation.

(d) Aage et al., Nature (2017). (e) Alonso et al., CAMWA

(2019).
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Shape vs. topology optimization

(a) Shape optimization

(b) Topology optimization
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Models & optimization strategies

The model for representing the topology of the minimizer:

(a) Density. (b) Level-set.

(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund,

2003) has ∼ 11, 000 citations. Over 20 professional software packages,

consulting firms etc. 3
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Numerical difficulties

Models for topology optimization problems tend to:

• involve PDEs =⇒ require a discretization, e.g. the finite element

method (FEM).

• be nonconvex =⇒ may support multiple local minima.

Open questions

• What is the best model?

• How do we interpret regions that are neither completely void or

continuum?

• Do discretizations of the models actually converge to the minimizers

of the original problem?

• Are the discretizations well behaved?

• Can we prove error bounds?

• Is there a general framework for proving convergence of FEM to all

(density-based) topology optimization problems?
4
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Compliance topology optimization

MBB beam.

A compliance problem

• Linear elasticity.

• Wish to minimize the compliance of the material (its displacement

due to a force).

• Catch! We only have enough material to occupy 1/2 of the area.

• Requires solving a nonconvex optimzation problem with PDE, box,

and volume constraints.
5
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Topology optimization of elasticity

We are solving for the displacement u ∈ H1(Ω;Rd) and the density

ρ ∈ L∞(Ω; [0, 1]).

Displacement: u : Ω → Rd Density: ρ : Ω → [0, 1]

MBB Beam
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MBB Optimization via LVPP
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The SIMP model

Let k(ρ) = ϵ+ (1− ϵ)ρp, ϵ ≪ 1, p ≥ 1.

Optimization problem

min
u,ρ

∫
ΓN

f · u ds

subject to

−divσ = 0,

σ = k(ρ)[2µ∇s(u) + λdiv(u)I ]

u = 0 on ΓD

σn = f on ∂Ω\ΓD .

0 ≤ ρ ≤ 1 a.e. in Ω,∫
Ω
ρ dx ≤ γ|Ω|.

µ and λ are the Lamé coefficients, ∇s = (∇+∇⊤)/2, I is the

d × d identity matrix, and γ is the volume fraction.
8
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The SIMP function k(ρ)

k(ρ) = ϵ+ (1− ϵ)ρp, ϵ ≪ 1, p ≥ 1.

Note that k(1) = 1 and k(0) = ϵ ≪ 1. So

σ ≈ 2µ∇s(u) + λdiv(u)I wherever ρ = 1 (high stiffness),

σ ≈ 0 wherever ρ = 0 (no stiffness).

Role of the exponent p

Also as p → ∞, this promotes ρ(x) → {0, 1}, i.e. the density to

become binary as intermediate regions (where 0 < ρ < 1)

become increasingly less optimal because ρp → 0 as p → ∞. A

very common choice is p = 3.
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The SIMP model

Semi-bilinear form

aρ(u, v) =

∫
Ω
k(ρ)[2µ∇s(u) : ∇s(v) + λdiv(u)div(v)]dx .

Variational formulation

Find u ∈ H1
ΓD
(Ω)d , ρ ∈ L∞(Ω) that minimizes

min
u,ρ

∫
ΓN

f · u ds

subject to, for all v ∈ H1
ΓD
(Ω)d ,

aρ(u, v) = (f , v)L2(ΓN),

0 ≤ ρ ≤ 1 a.e. in Ω,

∫
Ω
ρdx ≤ γ|Ω|.
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Existence of minimizers

Observation

When p > 1, the SIMP model does not guarantee the existence

of a minimizer.

Consequence

After a FEM discretization, there exists a minimizer, but as

h → 0, we either get checkerboarding, or the beams of the elastic

material become ever-thinner leading to nonphysical solutions in

the limit.

Checkerboarding in the MBB beam. 11
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Functional analysis

Strong convergence

zn → z strongly in Lq(Ω) if limn→∞ ∥zn − z∥Lq(Ω) = 0.

Weak convergence

zn ⇀ z weakly in Lq(Ω), if for all v ∈ Lq
′
(Ω), 1/q′ + 1/q = 1,∫

Ω

znv dx →
∫
Ω

zv dx .

Weak-* convergence

zn
∗
⇀ z weakly-* in L∞(Ω), if for all v ∈ L1(Ω),

∫
Ω
znv dx →

∫
Ω
zv dx .

Weak convergence ⇏ strong convergence

sin(nx) ⇀ 0 weakly in L2([0, 2π]), but ∥ sin(nx)∥L2([0,2π]) = π ∀ n ∈ Z+.
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What goes wrong?

Minimizing sequence

Extract a minimizing sequence (un, ρn) such that

un ⇀ û weakly in H1(Ω)d

ρn
∗
⇀ ρ̂ weakly-* in L∞(Ω)

Problem

However the weak-* convergence means that

lim
n→∞

aρn(un, v) ̸= aρ(u, v) = (f , v)L2(ΓN).

One cannot take the limit in the PDE constraint!

Solution

Somehow extract a stronger converging sequence for ρn.

13
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Restriction methods

Sobolev regularization

Modify objective functional. For some δ ≪ 1 and q ∈ [1,∞],

find (uδ, ρδ) minimizing

min
u,ρ

∫
ΓN

f · u ds + δ

q
∥∇ρ∥qLq(Ω) + rest of constraints.

Then we extract a minimizing sequence ρn ⇀ ρ̂ weakly in

W 1,q(Ω) =⇒ aρn(un, v) → aρ(u, v) = (f , v)L2(ΓN).
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Restriction methods

Density filtering

Modify PDE constraint. Consider F ∈ W 1,∞(Rd), F ≥ 0,

∥F∥L1(Rd ) = 1. E.g.

F (x) =
exp(∥x∥2/(2σ2))

∥ exp(∥ · ∥2/(2σ2))∥L1(Rd )

.

We define the filtered density ρ̃(ρ) ∈ W 1,∞(Ω) as

ρ̃(ρ)(x) = (F ⋆ ρ)(x) =

∫
Ω

F (x − y)ρ(y)dy ,

and instead solve

aρ̃(ρ)(u, v) = (f , v)L2(ΓN ).

Then ρn
∗
⇀ ρ̂ weakly-* in L∞(Ω) =⇒ ρ̃n → ˆ̃ρ strongly in L∞(Ω)

=⇒ aρ̃n(un, v) → aρ̃(u, v) = (f , v)L2(ΓN ).
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Finite element discretization

Quasi-uniform and non-degenerate triangulation.

H := {η ∈ L∞(Ω) : 0 ≤ η ≤ 1, ∥η∥L1(Ω) ≤ γ|Ω|}.

Conforming discretization

uh ∈ Xh ⊂ H1(Ω)d ,

ρh ∈ Hh ⊂

H density filtering,

W 1,q(Ω) ∩H Sobolev regularization.

Discretized filtered density:

ρ̃h(ρh)(x) = Πh

∫
Ω
F (x − y)ρh(y) dy .

16
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Quasi-uniform and non-degenerate triangulation.

H := {η ∈ L∞(Ω) : 0 ≤ η ≤ 1, ∥η∥L1(Ω) ≤ γ|Ω|}.

Conforming discretization

uh ∈ Xh ⊂ H1(Ω)d ,
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H density filtering,

W 1,q(Ω) ∩H Sobolev regularization.

Discretized filtered density:
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∫
Ω
F (x − y)ρh(y) dy .
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(Brief) history of FEM convergence

Density filtering

There exists a minimizer (u, ρ) and a sequence such that

uh → u strongly in H1(Ω)d ,

ρh
∗
⇀ ρ weakly-* in L∞(Ω),

ρ̃h → ρ̃ strongly in L∞(Ω).

Open problems

1. What is (u, ρ)? Is it a local or global minimum? What about

the other minima?

2. Does ρh → ρ strongly?

3. Does ρ̃h → ρ̃ strongly in W 1,q(Ω) if Hh ⊂ W 1,q(Ω)?
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(Brief) history of FEM convergence

Sobolev regularization

There exists a minimizer (u, ρ) and a sequence such that

uh → u strongly in H1(Ω)d ,

ρh ⇀ ρ weakly in W 1,q(Ω),

ρh → ρ strongly in Ls(Ω), s ∈ [1,∞).

Open problems

1. What is (u, ρ)? Is it a local or global minimum? What about

the other minima?

2. Does ρh → ρ strongly in W 1,q(Ω)?
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Finite element convergence

Key idea: fix an isolated local minimizer (u, ρ).
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Finite element convergence

Consider the modified finite-dimensional optimization problem:

Find a compliance minimizer (u∗h , ρ
∗
h) ∈ B ∩ (Xh ×Hh). (*)

(u∗h , ρ
∗
h) is not computable in practice.
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Finite element convergence: Sobolev regularization

Find a discretized compliance minimizer (u∗h , ρ
∗
h) ∈ B ∩ (Xh ×Hh). (*)

𝑢h
∗ 𝑢h

∗
𝑢∗ 𝑢∗Step 1

1/2   page

ρ ρ u u 

Strong convergence of u∗h and ρ∗h, lifts the basin of attraction constraint,

i.e. no more dependence on B.
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Finite element convergence: Density filtering

Find a discretized compliance minimizer (u∗h , ρ
∗
h) ∈ B ∩ (Xh ×Hh). (*)

𝑢h
∗ 𝑢h
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ρ ρ u u 

𝑢Step 2
1   page

𝑢∗u ρ 𝑢∗ u ρ 

𝑢h
∗Step 3

1/2   page
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Strong convergence of ρ∗h in Ls(Ω), s ∈ [1,∞) and ρ̃h in W 1,q(Ω) is

subtle.
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Density filtering: strong convergence of ρ∗h

ϵ-perturbed problem: find (uϵ, ρϵ) ∈ B ∩ (H1(Ω)d ×H).

min
u,ρ

(f , u)L2(ΓN) +
ϵ

2
∥ρ∥2L2(Ω) + PDE constraint.

ρ∗ϵ,h ρ∗ϵ

ρ∗h ρ

ϵ→0

h→0

ϵ→0

h→0

Figure 5: →: strong convergence in L2(Ω).
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Density filtering: strong convergence of ρ∗h

ϵ-perturbed problem: find (uϵ, ρϵ) ∈ B ∩ (H1(Ω)d ×H)

min
u,ρ

(f , u)L2(ΓN) +
ϵ

2
∥ρ∥2L2(Ω) + PDE constraint.

Outline of proof

1. Estimates ⇒ ρ∗ϵ,h → ρ∗ϵ strongly in L2(Ω) as h → 0.

2. Minimizer ⇒ ρ∗ϵ → ρ, ρ∗ϵ,h → ρ∗h strongly in L2(Ω) as ϵ → 0.

3. Boundedness ⇒
limh→0 limϵ→0 ∥ρ∗ϵ,h∥L2(Ω) = limϵ→0 limh→0 ∥ρ∗ϵ,h∥L2(Ω).

4. Interchange of limits ⇒ limh→0 ∥ρ∗h∥L2(Ω) = ∥ρ∥L2(Ω).

5. Radon–Riesz. (4) + ρ∗h ⇀ ρ in L2(Ω) =⇒ ρh → ρ strongly

in L2(Ω).

6. Consequence. Strong convergence of u∗h and ρ∗h, lifts the

basin of attraction constraint, i.e. no more dependence on B.
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Density filtering: strong convergence of ρ̃h

ϵ-perturbed problem: find (uϵ, ρϵ) ∈ B ∩ (H1(Ω)d ×H)

min
u,ρ

(f , u)L2(ΓN) +
ϵ

p
∥∇ρ̃(ρ)∥pLp(Ω) + PDE constraint.

∇ρ̃h(ρ
∗
ϵ,h) ∇ρ̃(ρ∗ϵ )

∇ρ̃h(ρ
∗
h) ∇ρ̃(ρ)

ϵ→0

h→0

ϵ→0

h→0

One deduces that ρ̃h(ρh) → ρ̃(ρ) strongly in W 1,q(Ω).
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Conclusions

• All isolated minimizers are approximated by FEM.

• Displacements converge strongly uh → u in H1(Ω)d .

• Density filtering: density converges strongly ρh → ρ in Ls(Ω),

s ∈ [1,∞).

• Density filtering: filtered density converges strongly ρ̃h(ρh) → ρ̃(ρ)

in W 1,q(Ω).

• Sobolev regularization: density converges strongly ρh → ρ in

W 1,q(Ω).

For more details see:

Numerical analysis of the SIMP model for the topology optimization of

minimizing compliance in linear elasticity

I. P. Numerische Mathematik, 2024,

https://doi.org/10.1007/s00211-024-01438-3.
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Thank you for listening!

papadopoulos@wias-berlin.de
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