Numerical analysis of a topology optimization problem for the compliance of a linearly elastic structure

John Papadopoulos

17 April 2025

Brown University, METHODS Group Meeting

# **Topology optimization**



(a) TO of compliance. (b) TO of compliance.



# **Topology optimization**



(a) TO of compliance.



(b) TO of compliance.



1

(c) TO of power dissipation.

# **Topology optimization**



(a) TO of compliance.



(b) TO of compliance.



1

(c) TO of power dissipation.



(d) Aage et al., *Nature* (2017).





# Shape vs. topology optimization

# 

(a) Shape optimization





(b) Topology optimization

# Models & optimization strategies

The model for representing the topology of the minimizer:



 $\phi < \mathbf{0}$   $\phi > 0$ 

(a) Density.





(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has  $\sim 11,000$  citations. Over 20 professional software packages, consulting firms etc.

# Models & optimization strategies

The model for representing the topology of the minimizer:





(a) Density.





(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has  $\sim 11,000$  citations. Over 20 professional software packages, consulting firms etc.

# Models & optimization strategies

The model for representing the topology of the minimizer:



(a) Density.







(c) Admissible domain maps.

The main textbook describing the density approach (Bendsoe, Sigmund, 2003) has  $\sim$  11,000 citations. Over 20 professional software packages, consulting firms etc.

## Models for topology optimization problems tend to:

- involve PDEs ⇒ require a discretization, e.g. the finite element method (FEM).
- be nonconvex  $\implies$  may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

## Models for topology optimization problems tend to:

- involve PDEs ⇒ require a discretization, e.g. the finite element method (FEM).
- be nonconvex  $\implies$  may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

## Models for topology optimization problems tend to:

- involve PDEs ⇒ require a discretization, e.g. the finite element method (FEM).
- be nonconvex  $\implies$  may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

## Models for topology optimization problems tend to:

- involve PDEs ⇒ require a discretization, e.g. the finite element method (FEM).
- be nonconvex  $\implies$  may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?

## Models for topology optimization problems tend to:

- involve PDEs ⇒ require a discretization, e.g. the finite element method (FEM).
- be nonconvex  $\implies$  may support multiple local minima.

- What is the best model?
- How do we interpret regions that are neither completely void or continuum?
- Do discretizations of the models actually converge to the minimizers of the original problem?
- Are the discretizations well behaved?
- Can we prove error bounds?
- Is there a general framework for proving convergence of FEM to all (density-based) topology optimization problems?



MBB beam.

- Linear elasticity.
- Wish to minimize the compliance of the material (its displacement due to a force).
- Catch! We only have enough material to occupy 1/2 of the area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.



MBB beam.

- Linear elasticity.
- Wish to minimize the compliance of the material (its displacement due to a force).
- Catch! We only have enough material to occupy 1/2 of the area.
- Requires solving a nonconvex optimization problem with PDE, box, and volume constraints.



#### MBB beam.

- Linear elasticity.
- Wish to minimize the compliance of the material (its displacement due to a force).
- Catch! We only have enough material to occupy 1/2 of the area.
- Requires solving a nonconvex optimzation problem with PDE, box, and volume constraints.



#### MBB beam.

- Linear elasticity.
- Wish to minimize the compliance of the material (its displacement due to a force).
- Catch! We only have enough material to occupy 1/2 of the area.
- Requires solving a nonconvex optimzation problem with PDE, box, and volume constraints.



#### MBB beam.

- Linear elasticity.
- Wish to minimize the compliance of the material (its displacement due to a force).
- Catch! We only have enough material to occupy 1/2 of the area.
- Requires solving a nonconvex optimzation problem with PDE, box, and volume constraints.

We are solving for the displacement  $u \in H^1(\Omega; \mathbb{R}^d)$  and the density  $\rho \in L^{\infty}(\Omega; [0, 1])$ .



Displacement:  $u: \Omega \to \mathbb{R}^d$ 

Density:  $\rho: \Omega \rightarrow [0, 1]$ 

MBB Beam

# MBB Optimization via LVPP



Let 
$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p$$
,  $\epsilon \ll 1$ ,  $p \ge 1$ .

## **Optimization problem**

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

```
subject to
```

```
\begin{aligned} -\operatorname{div} \sigma &= 0, \\ \sigma &= k(\rho)[2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I] & 0 \leq \rho \leq 1 \text{ a.e. in } \Omega, \\ u &= 0 \text{ on } \Gamma_D & \int_{\Omega} \rho \, \mathrm{d}x \leq \gamma |\Omega|. \\ \sigma \mathbf{n} &= f \text{ on } \partial \Omega \backslash \Gamma_D. \end{aligned}
```

 $\mu$  and  $\lambda$  are the Lamé coefficients,  $\nabla_s = (\nabla + \nabla^\top)/2$ , *I* is the  $d \times d$  identity matrix, and  $\gamma$  is the volume fraction.

Let 
$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p$$
,  $\epsilon \ll 1$ ,  $p \ge 1$ .

**Optimization problem** 

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

subject to

 $\begin{aligned} -\operatorname{div} \sigma &= 0, \\ \sigma &= k(\rho)[2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I] & 0 \leq \rho \leq 1 \text{ a.e. in } \Omega, \\ u &= 0 \text{ on } \Gamma_D & \int_{\Omega} \rho \, \mathrm{d}x \leq \gamma |\Omega|. \\ \sigma \mathbf{n} &= f \text{ on } \partial \Omega \backslash \Gamma_D. \end{aligned}$ 

 $\mu$  and  $\lambda$  are the Lamé coefficients,  $\nabla_s = (\nabla + \nabla^+)/2$ , l is the  $d \times d$  identity matrix, and  $\gamma$  is the volume fraction.

Let 
$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p$$
,  $\epsilon \ll 1$ ,  $p \ge 1$ .

**Optimization problem** 

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

subject to

$$\begin{aligned} -\operatorname{div} \sigma &= 0, \\ \sigma &= k(\rho)[2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I] \\ u &= 0 \text{ on } \Gamma_D \\ \sigma \mathbf{n} &= f \text{ on } \partial \Omega \backslash \Gamma_D. \end{aligned} \qquad \begin{array}{l} 0 &\leq \rho \leq 1 \text{ a.e. in } \Omega, \\ \int_{\Omega} \rho \, \mathrm{dx} \leq \gamma |\Omega|. \end{aligned}$$

 $\mu$  and  $\lambda$  are the Lamé coefficients,  $\nabla_s = (\nabla + \nabla^{\top})/2$ , I is the  $d \times d$  identity matrix, and  $\gamma$  is the volume fraction.

Let 
$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p$$
,  $\epsilon \ll 1$ ,  $p \ge 1$ .

**Optimization problem** 

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

subject to

$$\begin{split} -\text{div}\sigma &= 0, \\ \sigma &= k(\rho)[2\mu\nabla_s(u) + \lambda \text{div}(u)I] & 0 \leq \rho \leq 1 \text{ a.e. in }\Omega, \\ u &= 0 \text{ on } \Gamma_D & \int_{\Omega} \rho \, \text{d}x \leq \gamma |\Omega|. \\ \sigma \mathbf{n} &= f \text{ on } \partial\Omega \backslash \Gamma_D. \end{split}$$

 $\mu$  and  $\lambda$  are the Lamé coefficients,  $\nabla_s = (\nabla + \nabla^+)/2$ , I is the  $d \times d$  identity matrix, and  $\gamma$  is the volume fraction.

Let 
$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p$$
,  $\epsilon \ll 1$ ,  $p \ge 1$ .

**Optimization problem** 

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

subject to

$$\begin{split} -\text{div}\sigma &= 0, \\ \sigma &= k(\rho)[2\mu\nabla_s(u) + \lambda \text{div}(u)I] & 0 \leq \rho \leq 1 \text{ a.e. in }\Omega, \\ u &= 0 \text{ on } \Gamma_D & \int_{\Omega} \rho \, \text{d}x \leq \gamma |\Omega|. \\ \sigma \mathbf{n} &= f \text{ on } \partial\Omega \backslash \Gamma_D. \end{split}$$

 $\mu$  and  $\lambda$  are the Lamé coefficients,  $\nabla_s = (\nabla + \nabla^\top)/2$ , I is the  $d \times d$  identity matrix, and  $\gamma$  is the volume fraction.

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

 $\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$  wherever  $\rho = 1$  (high stiffness),  $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### Role of the exponent p

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

 $\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$  wherever  $\rho = 1$  (high stiffness),  $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### Role of the exponent p

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

 $\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$  wherever  $\rho = 1$  (high stiffness),  $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### Role of the exponent p

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

$$\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$$
 wherever  $\rho = 1$  (high stiffness),  
 $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### Role of the exponent p

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

 $\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$  wherever  $\rho = 1$  (high stiffness),  $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### **Role of the exponent** *p*

$$k(\rho) = \epsilon + (1 - \epsilon)\rho^p, \ \epsilon \ll 1, \ p \ge 1.$$

$$\sigma \approx 2\mu \nabla_s(u) + \lambda \operatorname{div}(u)I$$
 wherever  $\rho = 1$  (high stiffness),  
 $\sigma \approx 0$  wherever  $\rho = 0$  (no stiffness).

#### Role of the exponent p

## Semi-bilinear form

$$a_{\rho}(u,v) = \int_{\Omega} k(\rho) [2\mu \nabla_s(u) : \nabla_s(v) + \lambda \operatorname{div}(u) \operatorname{div}(v)] \mathrm{d}x.$$

#### Variational formulation

Find  $u \in H^1_{\Gamma_D}(\Omega)^d$ ,  $\rho \in L^{\infty}(\Omega)$  that minimizes

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s$$

subject to, for all  $v \in H^1_{\Gamma_{\Omega}}(\Omega)^d$ ,

$$a_{
ho}(u,v) = (f,v)_{L^2(\Gamma_N)},$$
  
 $0 \le 
ho \le 1 ext{ a.e. in } \Omega, \quad \int_{\Omega} 
ho \, \mathrm{d}x \le \gamma |\Omega|.$ 

#### Semi-bilinear form

$$a_{\rho}(u,v) = \int_{\Omega} k(\rho) [2\mu \nabla_s(u) : \nabla_s(v) + \lambda \operatorname{div}(u) \operatorname{div}(v)] \mathrm{d}x.$$

## Variational formulation

Find  $u \in H^1_{\Gamma_D}(\Omega)^d$ ,  $\rho \in L^{\infty}(\Omega)$  that minimizes

$$\min_{u,\rho}\int_{\Gamma_N}f\cdot u\,\mathrm{d}s$$

subject to, for all  $v \in H^1_{\Gamma_D}(\Omega)^d$ ,

$$a_{
ho}(u,v) = (f,v)_{L^2(\Gamma_N)},$$
  
 $0 \le 
ho \le 1 ext{ a.e. in } \Omega, \quad \int_{\Omega} 
ho \, \mathrm{d}x \le \gamma |\Omega|.$ 

# **Existence of minimizers**

## Observation

When p > 1, the SIMP model does not guarantee the existence of a minimizer.

#### Consequence

After a FEM discretization, there exists a minimizer, but as  $h \rightarrow 0$ , we either get checkerboarding, or the beams of the elastic material become ever-thinner leading to nonphysical solutions in the limit.



Checkerboarding in the MBB beam.

## Observation

When p > 1, the SIMP model does not guarantee the existence of a minimizer.

#### Consequence

After a FEM discretization, there exists a minimizer, but as  $h \rightarrow 0$ , we either get checkerboarding, or the beams of the elastic material become ever-thinner leading to nonphysical solutions in the limit.



Checkerboarding in the MBB beam.

# **Functional analysis**

## Strong convergence

$$z_n \to z$$
 strongly in  $L^q(\Omega)$  if  $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$ .

#### Weak convergence

 $z_n 
ightarrow z$  weakly in  $L^q(\Omega)$ , if for all  $v \in L^{q'}(\Omega)$ , 1/q' + 1/q = 1,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

#### Weak-\* convergence

 $z_n \stackrel{*}{\rightharpoonup} z$  weakly-\* in  $L^{\infty}(\Omega)$ , if for all  $v \in L^1(\Omega)$ ,  $\int_{\Omega} z_n v \, \mathrm{d}x \to \int_{\Omega} zv \, \mathrm{d}x$ .

#### Weak convergence $\Rightarrow$ strong convergence

 $sin(nx) \rightarrow 0$  weakly in  $L^2([0, 2\pi])$ , but  $\|sin(nx)\|_{L^2([0, 2\pi])} = \pi \ \forall \ n \in \mathbb{Z}_+$ .
## **Functional analysis**

#### Strong convergence

$$z_n \to z$$
 strongly in  $L^q(\Omega)$  if  $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$ .

#### Weak convergence

 $z_n 
ightarrow z$  weakly in  $L^q(\Omega)$ , if for all  $v \in L^{q'}(\Omega)$ , 1/q' + 1/q = 1,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

#### Weak-\* convergence

 $z_n \stackrel{*}{\rightharpoonup} z$  weakly-\* in  $L^{\infty}(\Omega)$ , if for all  $v \in L^1(\Omega)$ ,  $\int_{\Omega} z_n v \, dx \to \int_{\Omega} zv \, dx$ .

Weak convergence  $\Rightarrow$  strong convergence

 $sin(nx) \rightarrow 0$  weakly in  $L^2([0, 2\pi])$ , but  $\|sin(nx)\|_{L^2([0, 2\pi])} = \pi \ \forall \ n \in \mathbb{Z}_+$ .

## **Functional analysis**

#### Strong convergence

$$z_n \to z$$
 strongly in  $L^q(\Omega)$  if  $\lim_{n\to\infty} \|z_n - z\|_{L^q(\Omega)} = 0$ .

#### Weak convergence

 $z_n 
ightarrow z$  weakly in  $L^q(\Omega)$ , if for all  $v \in L^{q'}(\Omega)$ , 1/q' + 1/q = 1,

$$\int_{\Omega} z_n v \, \mathrm{d} x \to \int_{\Omega} z v \, \mathrm{d} x.$$

#### Weak-\* convergence

$$z_n \stackrel{*}{\rightharpoonup} z$$
 weakly-\* in  $L^{\infty}(\Omega)$ , if for all  $v \in L^1(\Omega)$ ,  $\int_{\Omega} z_n v \, \mathrm{d}x \to \int_{\Omega} zv \, \mathrm{d}x$ .

### Weak convergence $\Rightarrow$ strong convergence

 $\sin(nx) \rightarrow 0$  weakly in  $L^2([0, 2\pi])$ , but  $\|\sin(nx)\|_{L^2([0, 2\pi])} = \pi \ \forall \ n \in \mathbb{Z}_+$ .

## What goes wrong?

### Minimizing sequence

Extract a minimizing sequence  $(u_n, \rho_n)$  such that  $u_n \rightharpoonup \hat{u}$  weakly in  $H^1(\Omega)^d$  $\rho_n \stackrel{*}{\rightharpoonup} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega)$ 

#### Problem

However the weak-\* convergence means that

$$\lim_{n\to\infty}a_{\rho_n}(u_n,v)\neq a_{\rho}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

One cannot take the limit in the PDE constraint!

#### Solution

Somehow extract a stronger converging sequence for  $\rho_n$ .

## What goes wrong?

### Minimizing sequence

Extract a minimizing sequence  $(u_n, \rho_n)$  such that  $u_n \rightharpoonup \hat{u}$  weakly in  $H^1(\Omega)^d$  $\rho_n \stackrel{*}{\rightharpoonup} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega)$ 

#### Problem

However the weak-\* convergence means that

$$\lim_{n\to\infty}a_{\rho_n}(u_n,v)\neq a_{\rho}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

One cannot take the limit in the PDE constraint!

#### Solution

Somehow extract a stronger converging sequence for  $\rho_n$ .

## What goes wrong?

### Minimizing sequence

Extract a minimizing sequence  $(u_n, \rho_n)$  such that  $u_n \rightharpoonup \hat{u}$  weakly in  $H^1(\Omega)^d$  $\rho_n \stackrel{*}{\rightharpoonup} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega)$ 

#### Problem

However the weak-\* convergence means that

$$\lim_{n\to\infty}a_{\rho_n}(u_n,v)\neq a_{\rho}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

One cannot take the limit in the PDE constraint!

#### Solution

Somehow extract a stronger converging sequence for  $\rho_n$ .

#### Sobolev regularization

**Modify objective functional**. For some  $\delta \ll 1$  and  $q \in [1, \infty]$ , find  $(u_{\delta}, \rho_{\delta})$  minimizing

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s + \frac{\delta}{q} \|\nabla \rho\|_{L^q(\Omega)}^q + \text{rest of constraints.}$$

Then we extract a minimizing sequence  $\rho_n \rightarrow \hat{\rho}$  weakly in  $W^{1,q}(\Omega) \implies a_{\rho_n}(u_n, v) \rightarrow a_{\rho}(u, v) = (f, v)_{L^2(\Gamma_N)}.$ 

#### Sobolev regularization

**Modify objective functional**. For some  $\delta \ll 1$  and  $q \in [1, \infty]$ , find  $(u_{\delta}, \rho_{\delta})$  minimizing

$$\min_{u,\rho} \int_{\Gamma_N} f \cdot u \, \mathrm{d}s + \frac{\delta}{q} \|\nabla \rho\|_{L^q(\Omega)}^q + \text{rest of constraints.}$$

Then we extract a minimizing sequence  $\rho_n \rightharpoonup \hat{\rho}$  weakly in  $W^{1,q}(\Omega) \implies a_{\rho_n}(u_n, v) \rightarrow a_{\rho}(u, v) = (f, v)_{L^2(\Gamma_N)}.$ 

### **Density filtering**

Modify PDE constraint. Consider  $F \in W^{1,\infty}(\mathbb{R}^d)$ ,  $F \ge 0$ ,  $\|F\|_{L^1(\mathbb{R}^d)} = 1$ . E.g.

$$F(x) = \frac{\exp(\|x\|^2/(2\sigma^2))}{\|\exp(\|\cdot\|^2/(2\sigma^2))\|_{L^1(\mathbb{R}^d)}}$$

We define the *filtered* density  $\tilde{\rho}(\rho) \in W^{1,\infty}(\Omega)$  as

$$\tilde{\rho}(\rho)(x) = (F \star \rho)(x) = \int_{\Omega} F(x - y)\rho(y) \,\mathrm{d}y,$$

and instead solve

$$a_{\tilde{\rho}(\rho)}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

Then  $\rho_n \stackrel{*}{\to} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega) \implies \tilde{\rho}_n \to \hat{\hat{\rho}}$  strongly in  $L^{\infty}(\Omega)$  $\implies a_{\tilde{\rho}_n}(u_n, v) \to a_{\tilde{\rho}}(u, v) = (f, v)_{L^2(\Gamma_N)}.$ 

### **Density filtering**

Modify PDE constraint. Consider  $F \in W^{1,\infty}(\mathbb{R}^d)$ ,  $F \ge 0$ ,  $\|F\|_{L^1(\mathbb{R}^d)} = 1$ . E.g.

$$F(x) = \frac{\exp(\|x\|^2/(2\sigma^2))}{\|\exp(\|\cdot\|^2/(2\sigma^2))\|_{L^1(\mathbb{R}^d)}}$$

We define the *filtered* density  $\tilde{\rho}(\rho) \in W^{1,\infty}(\Omega)$  as

$$\tilde{\rho}(\rho)(x) = (F \star \rho)(x) = \int_{\Omega} F(x - y)\rho(y) \,\mathrm{d}y,$$

and instead solve

$$a_{\tilde{\rho}(\rho)}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

Then  $\rho_n \stackrel{*}{\to} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega) \implies \tilde{\rho}_n \to \hat{\rho}$  strongly in  $L^{\infty}(\Omega)$  $\implies a_{\tilde{\rho}_n}(u_n, v) \to a_{\tilde{\rho}}(u, v) = (f, v)_{L^2(\Gamma_N)}$ .

### **Density filtering**

Modify PDE constraint. Consider  $F \in W^{1,\infty}(\mathbb{R}^d)$ ,  $F \ge 0$ ,  $\|F\|_{L^1(\mathbb{R}^d)} = 1$ . E.g.

$$F(x) = \frac{\exp(\|x\|^2/(2\sigma^2))}{\|\exp(\|\cdot\|^2/(2\sigma^2))\|_{L^1(\mathbb{R}^d)}}$$

We define the *filtered* density  $\tilde{\rho}(\rho) \in W^{1,\infty}(\Omega)$  as

$$\tilde{\rho}(\rho)(x) = (F \star \rho)(x) = \int_{\Omega} F(x - y)\rho(y) \,\mathrm{d}y,$$

and instead solve

$$a_{\tilde{\rho}(\rho)}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

Then  $\rho_n \stackrel{*}{\longrightarrow} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega) \implies \tilde{\rho}_n \to \hat{\hat{\rho}}$  strongly in  $L^{\infty}(\Omega)$  $\implies a_{\tilde{\rho}_n}(u_n, v) \to a_{\tilde{\rho}}(u, v) = (f, v)_{L^2(\Gamma_N)}.$ 

### **Density filtering**

Modify PDE constraint. Consider  $F \in W^{1,\infty}(\mathbb{R}^d)$ ,  $F \ge 0$ ,  $\|F\|_{L^1(\mathbb{R}^d)} = 1$ . E.g.

$$F(x) = \frac{\exp(||x||^2/(2\sigma^2))}{\|\exp(||\cdot||^2/(2\sigma^2))\|_{L^1(\mathbb{R}^d)}}$$

We define the *filtered* density  $\tilde{\rho}(\rho) \in W^{1,\infty}(\Omega)$  as

$$\tilde{\rho}(\rho)(x) = (F \star \rho)(x) = \int_{\Omega} F(x - y)\rho(y) \,\mathrm{d}y,$$

and instead solve

$$a_{\tilde{\rho}(\rho)}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

Then  $\rho_n \stackrel{*}{\longrightarrow} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega) \implies \tilde{\rho}_n \to \hat{\tilde{\rho}}$  strongly in  $L^{\infty}(\Omega)$  $\implies a_{\tilde{\rho}_n}(u_n, v) \to a_{\tilde{\rho}}(u, v) = (f, v)_{L^2(\Gamma_N)}.$ 

### **Density filtering**

Modify PDE constraint. Consider  $F \in W^{1,\infty}(\mathbb{R}^d)$ ,  $F \ge 0$ ,  $\|F\|_{L^1(\mathbb{R}^d)} = 1$ . E.g.

$$F(x) = \frac{\exp(||x||^2/(2\sigma^2))}{\|\exp(||\cdot||^2/(2\sigma^2))\|_{L^1(\mathbb{R}^d)}}$$

We define the *filtered* density  $\tilde{\rho}(\rho) \in W^{1,\infty}(\Omega)$  as

$$\tilde{\rho}(\rho)(x) = (F \star \rho)(x) = \int_{\Omega} F(x - y)\rho(y) \,\mathrm{d}y,$$

and instead solve

$$a_{\tilde{\rho}(\rho)}(u,v)=(f,v)_{L^2(\Gamma_N)}.$$

Then  $\rho_n \stackrel{*}{\longrightarrow} \hat{\rho}$  weakly-\* in  $L^{\infty}(\Omega) \implies \tilde{\rho}_n \to \hat{\tilde{\rho}}$  strongly in  $L^{\infty}(\Omega)$  $\implies a_{\tilde{\rho}_n}(u_n, v) \to a_{\tilde{\rho}}(u, v) = (f, v)_{L^2(\Gamma_N)}.$  Quasi-uniform and non-degenerate triangulation.

$$\mathcal{H} := \{\eta \in L^{\infty}(\Omega) : 0 \le \eta \le 1, \|\eta\|_{L^{1}(\Omega)} \le \gamma |\Omega|\}.$$

Conforming discretization

$$u_h \in X_h \subset H^1(\Omega)^d,$$
  

$$\rho_h \in \mathcal{H}_h \subset \begin{cases} \mathcal{H} & \text{density filtering,} \\ W^{1,q}(\Omega) \cap \mathcal{H} & \text{Sobolev regularization.} \end{cases}$$

Discretized filtered density:

$$\tilde{\rho}_h(\rho_h)(x) = \prod_h \int_{\Omega} F(x-y)\rho_h(y) \,\mathrm{d}y.$$

Quasi-uniform and non-degenerate triangulation.

$$\mathcal{H} := \{ \eta \in L^{\infty}(\Omega) : 0 \le \eta \le 1, \|\eta\|_{L^{1}(\Omega)} \le \gamma |\Omega| \}.$$

Conforming discretization

$$u_h \in X_h \subset H^1(\Omega)^d,$$
  

$$\rho_h \in \mathcal{H}_h \subset \begin{cases} \mathcal{H} & \text{density filtering,} \\ W^{1,q}(\Omega) \cap \mathcal{H} & \text{Sobolev regularization.} \end{cases}$$

Discretized filtered density:

$$\tilde{\rho}_h(\rho_h)(x) = \prod_h \int_{\Omega} F(x-y)\rho_h(y) \,\mathrm{d}y.$$

Quasi-uniform and non-degenerate triangulation.

$$\mathcal{H} := \{\eta \in L^{\infty}(\Omega) : 0 \le \eta \le 1, \|\eta\|_{L^{1}(\Omega)} \le \gamma |\Omega|\}.$$

Conforming discretization

$$u_h \in X_h \subset H^1(\Omega)^d,$$
  

$$\rho_h \in \mathcal{H}_h \subset \begin{cases} \mathcal{H} & \text{density filtering,} \\ W^{1,q}(\Omega) \cap \mathcal{H} & \text{Sobolev regularization.} \end{cases}$$

Discretized filtered density:

$$\tilde{\rho}_h(\rho_h)(x) = \prod_h \int_{\Omega} F(x-y)\rho_h(y) \,\mathrm{d}y.$$

# (Brief) history of FEM convergence

### **Density filtering**

There exists a minimizer  $(u, \rho)$  and a sequence such that

$$u_h \to u$$
 strongly in  $H^1(\Omega)^d$ ,  
 $\rho_h \stackrel{*}{\rightharpoonup} \rho$  weakly-\* in  $L^{\infty}(\Omega)$ ,  
 $\tilde{\rho}_h \to \tilde{\rho}$  strongly in  $L^{\infty}(\Omega)$ .

- 1. What is  $(u, \rho)$ ? Is it a local or global minimum? What about the other minima?
- 2. Does  $\rho_h \rightarrow \rho$  strongly?
- 3. Does  $\tilde{\rho}_h \to \tilde{\rho}$  strongly in  $W^{1,q}(\Omega)$  if  $\mathcal{H}_h \subset W^{1,q}(\Omega)$ ?

# (Brief) history of FEM convergence

### **Density filtering**

There exists a minimizer  $(u, \rho)$  and a sequence such that

$$u_h \to u$$
 strongly in  $H^1(\Omega)^d$ ,  
 $\rho_h \stackrel{*}{\rightharpoonup} \rho$  weakly-\* in  $L^{\infty}(\Omega)$ ,  
 $\tilde{\rho}_h \to \tilde{\rho}$  strongly in  $L^{\infty}(\Omega)$ .

- 1. What is  $(u, \rho)$ ? Is it a local or global minimum? What about the other minima?
- 2. Does  $\rho_h \rightarrow \rho$  strongly?
- 3. Does  $\tilde{\rho}_h \to \tilde{\rho}$  strongly in  $W^{1,q}(\Omega)$  if  $\mathcal{H}_h \subset W^{1,q}(\Omega)$ ?

# (Brief) history of FEM convergence

### **Sobolev regularization**

There exists a minimizer  $(u, \rho)$  and a sequence such that

$$u_h \to u$$
 strongly in  $H^1(\Omega)^d$ ,  
 $\rho_h \to \rho$  weakly in  $W^{1,q}(\Omega)$ ,  
 $\rho_h \to \rho$  strongly in  $L^s(\Omega), s \in [1, \infty)$ .

- 1. What is  $(u, \rho)$ ? Is it a local or global minimum? What about the other minima?
- 2. Does  $\rho_h \to \rho$  strongly in  $W^{1,q}(\Omega)$ ?

### **Sobolev regularization**

There exists a minimizer  $(u, \rho)$  and a sequence such that

$$u_h \rightarrow u$$
 strongly in  $H^1(\Omega)^d$ ,  
 $\rho_h \rightarrow \rho$  weakly in  $W^{1,q}(\Omega)$ ,  
 $\rho_h \rightarrow \rho$  strongly in  $L^s(\Omega), s \in [1, \infty)$ .

- 1. What is  $(u, \rho)$ ? Is it a local or global minimum? What about the other minima?
- 2. Does  $\rho_h \to \rho$  strongly in  $W^{1,q}(\Omega)$ ?

Key idea: fix an isolated local minimizer  $(u, \rho)$ .



Consider the modified finite-dimensional optimization problem:

Find a compliance minimizer  $(u_h^*, \rho_h^*) \in \mathbb{B} \cap (X_h \times \mathcal{H}_h).$  (\*)

 $(u_h^*, \rho_h^*)$  is not computable in practice.



Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in B \cap (X_h \times \mathcal{H}_h)$ . (\*)

Step 1 
$$\mu_h^*$$
  $\mu_h^*$   $\mu_h^*$   $\mu_h^*$   $\mu_h^*$   $\mu_h^*$ 

Unknown weak limits

Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in \mathbf{B} \cap (X_h \times \mathcal{H}_h)$ . (\*)



Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in \mathbf{B} \cap (X_h \times \mathcal{H}_h)$ . (\*)



Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in \mathbf{B} \cap (X_h \times \mathcal{H}_h)$ . (\*)



Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in B \cap (X_h \times \mathcal{H}_h)$ . (\*)

Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on B.

Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in B \cap (X_h \times \mathcal{H}_h)$ . (\*)

Step 1 
$$\rho_{n}^{*} \xrightarrow{\text{weakly}(-*) \text{ in } H^{1}(\Omega)^{d} \times L^{\infty}(\Omega)}_{\text{Unknown weak limits}}$$
  
Step 2  $\rho^{*} \xrightarrow{\text{identify}}_{\text{I page}} \rho^{*} \xrightarrow{\text{identify}}_{\text{Unknown weak limits}}$   
Step 3  $\rho^{*} \xrightarrow{\text{strongly in } H^{1}(\Omega)^{d}}_{\text{Ull page}}$ 

Strong convergence of  $\rho_h^*$  in  $L^s(\Omega)$ ,  $s \in [1,\infty)$  and  $\tilde{\rho}_h$  in  $W^{1,q}(\Omega)$  is subtle.

Find a discretized compliance minimizer  $(u_h^*, \rho_h^*) \in B \cap (X_h \times \mathcal{H}_h)$ . (\*)

Step 1 
$$\rho_{n}^{*}$$
 weakly(-\*) in  $H^{1}(\Omega)^{d} \times L^{\infty}(\Omega)$   $\rho_{n}^{*}$  Unknown weak limits  
Step 2  $\rho_{n}^{*}$  identify  $\rho_{n}^{*}$  identify  $\rho_{n}^{*}$   $\rho_{n}^{$ 

Strong convergence of  $\rho_h^*$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$  and  $\tilde{\rho}_h$  in  $W^{1,q}(\Omega)$  is subtle.

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in \mathbb{B} \cap (H^1(\Omega)^d \times \mathcal{H}).$ 

 $\min_{u,\rho}(f,u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \mathsf{PDE} \text{ constraint.}$ 



**Figure 5:**  $\rightarrow$ : strong convergence in  $L^2(\Omega)$ .

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^1(\Omega)^d \times \mathcal{H}).$ 

$$\min_{u,\rho}(f,u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \mathsf{PDE} \text{ constraint.}$$



**Figure 5:**  $\rightarrow$ : strong convergence in  $L^2(\Omega)$ .

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. Minimizer  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$  $\lim_{h\to 0} \lim_{\epsilon\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)} = \lim_{\epsilon\to 0} \lim_{h\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$
- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. **Minimizer**  $\Rightarrow \rho_{\epsilon}^* \rightarrow \rho$ ,  $\rho_{\epsilon,h}^* \rightarrow \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \rightarrow 0$ .
- 3. Boundedness  $\Rightarrow$  $\lim_{h\to 0} \lim_{\epsilon\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)} = \lim_{\epsilon\to 0} \lim_{h\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$
- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. **Minimizer**  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$  $\lim_{h\to 0} \lim_{\epsilon\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)} = \lim_{\epsilon\to 0} \lim_{h\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$
- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. Minimizer  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$  $\lim_{h\to 0} \lim_{\epsilon\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)} = \lim_{\epsilon\to 0} \lim_{h\to 0} \|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$
- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on B

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

### Outline of proof

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. Minimizer  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$

 $\lim_{h\to 0}\lim_{\epsilon\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}=\lim_{\epsilon\to 0}\lim_{h\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$ 

- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

### Outline of proof

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. Minimizer  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$

 $\lim_{h\to 0}\lim_{\epsilon\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}=\lim_{\epsilon\to 0}\lim_{h\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$ 

- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*
# Density filtering: strong convergence of $\rho_h^*$

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in B \cap (H^{1}(\Omega)^{d} \times \mathcal{H})$  $\min_{u,\rho}(f, u)_{L^{2}(\Gamma_{N})} + \frac{\epsilon}{2} \|\rho\|_{L^{2}(\Omega)}^{2} + \text{PDE constraint.}$ 

#### Outline of proof

- 1. Estimates  $\Rightarrow \rho_{\epsilon,h}^* \to \rho_{\epsilon}^*$  strongly in  $L^2(\Omega)$  as  $h \to 0$ .
- 2. Minimizer  $\Rightarrow \rho_{\epsilon}^* \to \rho$ ,  $\rho_{\epsilon,h}^* \to \rho_h^*$  strongly in  $L^2(\Omega)$  as  $\epsilon \to 0$ .
- 3. Boundedness  $\Rightarrow$

 $\lim_{h\to 0}\lim_{\epsilon\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}=\lim_{\epsilon\to 0}\lim_{h\to 0}\|\rho_{\epsilon,h}^*\|_{L^2(\Omega)}.$ 

- 4. Interchange of limits  $\Rightarrow \lim_{h\to 0} \|\rho_h^*\|_{L^2(\Omega)} = \|\rho\|_{L^2(\Omega)}$ .
- 5. **Radon–Riesz**. (4) +  $\rho_h^* \rightarrow \rho$  in  $L^2(\Omega) \implies \rho_h \rightarrow \rho$  strongly in  $L^2(\Omega)$ .
- 6. **Consequence**. Strong convergence of  $u_h^*$  and  $\rho_h^*$ , lifts the basin of attraction constraint, i.e. no more dependence on *B*.

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in \mathcal{B} \cap (\mathcal{H}^1(\Omega)^d \times \mathcal{H})$ 

 $\min_{u,\rho}(f,u)_{L^2(\Gamma_N)} + \frac{\epsilon}{\rho} \|\nabla \tilde{\rho}(\rho)\|_{L^p(\Omega)}^p + \mathsf{PDE \ constraint.}$ 



One deduces that  $\tilde{\rho}_h(\rho_h) \to \tilde{\rho}(\rho)$  strongly in  $W^{1,q}(\Omega)$ 

 $\epsilon$ -perturbed problem: find  $(u_{\epsilon}, \rho_{\epsilon}) \in \mathcal{B} \cap (\mathcal{H}^1(\Omega)^d \times \mathcal{H})$ 

 $\min_{u,\rho}(f,u)_{L^2(\Gamma_N)} + \frac{\epsilon}{p} \|\nabla \tilde{\rho}(\rho)\|_{L^p(\Omega)}^p + \mathsf{PDE} \text{ constraint.}$ 

One deduces that  $\tilde{\rho}_h(\rho_h) \to \tilde{\rho}(\rho)$  strongly in  $W^{1,q}(\Omega)$ .

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly  $\rho_h \to \rho$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$ .
- Density filtering: filtered density converges strongly ρ
  <sub>h</sub>(ρ<sub>h</sub>) → ρ
  (ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \to \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity I. P. Numerische Mathematik, 2024, https://doi.org/10.1007/s00211-024-01438-3.

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly ρ<sub>h</sub> → ρ in L<sup>s</sup>(Ω), s ∈ [1,∞).
- Density filtering: filtered density converges strongly ρ̃<sub>h</sub>(ρ<sub>h</sub>) → ρ̃(ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \to \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity I. P. Numerische Mathematik, 2024, https://doi.org/10.1007/s00211-024-01438-3.

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly  $\rho_h \to \rho$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$ .
- Density filtering: filtered density converges strongly ρ̃<sub>h</sub>(ρ<sub>h</sub>) → ρ̃(ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \rightarrow \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity I. P. Numerische Mathematik, 2024, https://doi.org/10.1007/s00211-024-01438-3.

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly  $\rho_h \to \rho$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$ .
- Density filtering: filtered density converges strongly ρ̃<sub>h</sub>(ρ<sub>h</sub>) → ρ̃(ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \rightarrow \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

I. P. Numerische Mathematik, 2024, https://doi.org/10.1007/s00211-024-01438

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly  $\rho_h \to \rho$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$ .
- Density filtering: filtered density converges strongly ρ̃<sub>h</sub>(ρ<sub>h</sub>) → ρ̃(ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \rightarrow \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

https://doi.org/10.1007/s00211-024-01438-3.

- All isolated minimizers are approximated by FEM.
- Displacements converge strongly  $u_h \rightarrow u$  in  $H^1(\Omega)^d$ .
- Density filtering: density converges strongly  $\rho_h \to \rho$  in  $L^s(\Omega)$ ,  $s \in [1, \infty)$ .
- Density filtering: filtered density converges strongly ρ̃<sub>h</sub>(ρ<sub>h</sub>) → ρ̃(ρ) in W<sup>1,q</sup>(Ω).
- Sobolev regularization: density converges strongly  $\rho_h \rightarrow \rho$  in  $W^{1,q}(\Omega)$ .

For more details see:

Numerical analysis of the SIMP model for the topology optimization of minimizing compliance in linear elasticity

I. P. Numerische Mathematik, 2024,

https://doi.org/10.1007/s00211-024-01438-3.

# Thank you for listening!

⊠ papadopoulos@wias-berlin.de