

Hierarchical proximal Galerkin: a fast *hp*-FEM solver for variational problems with pointwise inequality constraints John Papadopoulos¹ ¹Weierstrass Institute Berlin,

April 11, 2025, Brown University Scientific Computing Seminar

Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

 $\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \text{ subject to } u(x) \leq \varphi(x) \text{ for almost every } x \in \Omega.$

- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning)

¹ With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

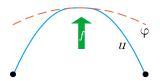
Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

 $\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{f} u\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x) \; \text{for almost every}\; x\in \Omega.$



- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

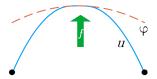
Introduction

Pointwise constraints appear everywhere, e.g. contact mechanics (non-penetration), stress constraints in elasticity, sandpile growth, financial mathematics, pattern formation, engineering design, biological models...

Obstacle problem

Given a forcing term $f \in L^2(\Omega)$ and an obstacle $\varphi \in H^1(\Omega)$, the obstacle problem seeks $u : \Omega \to \mathbb{R}$ minimizing the Dirichlet energy

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{fu}\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x) \; \text{for almost every}\; x\in \Omega.$$



- primal-dual active set, multigrid, finite-dimensional constrained optimizers (often mesh dependent, confined to low-order¹).
- penalty methods (infeasible solutions, suboptimal for high-order, ill-conditioning).

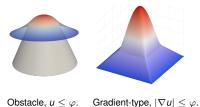
¹With notable exceptions in Kirby & Shapero (2024) and Banz & Schröder (2015).

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).

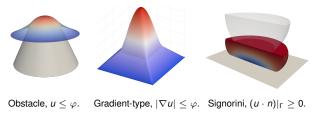
Obstacle, $u \leq \varphi$.

Latent variable proximal point (LVPP)

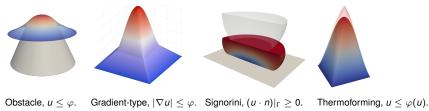
LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



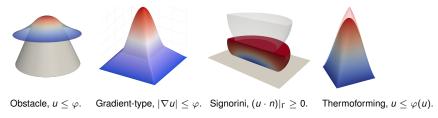
LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



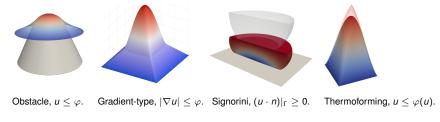
LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



Cahn–Hilliard, $u_i \ge 0, \sum_i u_i = 1.$

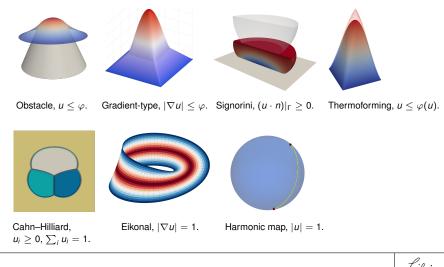
WI

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



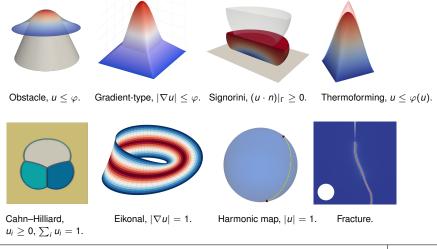
WI

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



WI

LVPP is a new and powerful framework for solving variational problems with pointwise constraints (https://arxiv.org/abs/2503.05672).



WI AS

Contact problems

Contact problems

Problems of interest

Consider the constrained optimization problem:

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x \text{ subject to } u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - fu \, \mathrm{d}x \; \text{ subject to } |\nabla u|(x) \leq \varphi(x).$$

Problems of interest

Consider the constrained optimization problem:

```
\min_{u\in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.
```

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u\in H_0^1(\Omega)}\int_\Omega \frac{1}{2}|\nabla u|^2 - \mathit{fu}\,\mathrm{d} x \;\; \text{subject to}\; u(x) \leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_\Omega \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d} x \; \; \mathsf{subject to} \; |\nabla u|(x) \leq \varphi(x).$$

Problems of interest

Consider the constrained optimization problem:

```
\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.
```

Examples

• (Obstacle problem.) Find $u: \Omega \to \mathbb{R}$

$$\min_{u\in H_0^1(\Omega)}\int_{\Omega}\frac{1}{2}|\nabla u|^2-fu\,\mathrm{d} x \ \text{ subject to } u(x)\leq \varphi(x).$$

• (Elastic-plastic torsion.) Find $u: \Omega \to \mathbb{R}$,

$$\min_{u\in H_0^1(\Omega)} \int_\Omega \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d} x \; \; \text{subject to} \; |\nabla u|(x) \leq \varphi(x).$$

The LVPP algorithm

 $\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

LVPP is an iterative algorithm where at each iteration we solve a *smooth* nonlinear system of PDEs:

The LVPP subproblem

Given ψ^{k-1} , for k = 1, 2, ..., we seek (u^k, ψ^k) satisfying $\alpha_k J'(u^k) + B^* \psi^k = B^* \psi^{k-1}$ in U^* $Bu^k - G(\psi^k) = 0$ a.e.,

- Pick proximal parameters α_k such that $\sum_{i=1}^{\infty} \alpha_i \to \infty$.
- Pick pointwise operator G such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

$\min_{u \in U} J(u) \text{ subject to } Bu(x) \in C(x) \text{ for a.e. } x \in \Omega.$

LVPP is an iterative algorithm where at each iteration we solve a *smooth* nonlinear system of PDEs:

The LVPP subproblem

The LVPP algorithm

Given
$$\psi^{k-1}$$
, for $k = 1, 2, ...,$ we seek (u^k, ψ^k) satisfying

$$\alpha_k J'(u^k) + B^* \psi^k = B^* \psi^{k-1} \text{ in } U^*$$
$$Bu^k - G(\psi^k) = 0 \text{ a.e.},$$

- Pick proximal parameters α_k such that $\sum_{j=1}^{\infty} \alpha_j \to \infty$.
- Pick pointwise operator G such that $G^{-1}(Bu)(x) \to \infty$ as $Bu(x) \to \partial C(x)$.

LVPP for the obstacle problem

Obstacle problem

$$\begin{split} \boldsymbol{U} &= \boldsymbol{H}_0^1(\Omega), \boldsymbol{B} = \boldsymbol{B}^* = \mathrm{id}, \boldsymbol{J}' = -\boldsymbol{\Delta} - \boldsymbol{f}, \, \mathrm{and} \, \boldsymbol{G}(\boldsymbol{\psi}) = \boldsymbol{\varphi} - \mathrm{e}^{-\boldsymbol{\psi}}.\\ \mathrm{Given} \, \boldsymbol{\psi}^{k-1} \in L^\infty(\Omega), \, \mathrm{for} \, k = 1, 2, \dots, \, \mathrm{we} \, \mathrm{seek} \, (\boldsymbol{u}^k, \boldsymbol{\psi}^k) \, \mathrm{satisfying} \\ &- \alpha_k \boldsymbol{\Delta} \boldsymbol{u}^k + \boldsymbol{\psi}^k = \alpha_k \boldsymbol{f} + \boldsymbol{\psi}^{k-1}, \\ & \boldsymbol{u}^k + \mathrm{e}^{-\boldsymbol{\psi}^k} = \boldsymbol{\varphi}. \end{split}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^* - u^k\|_{H^1(\Omega)} \lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Note that $u^k \to u^*$ in $H^1(\Omega)$ even if $\alpha_k = 1$ for all $k \in \mathbb{N}$.

LVPP for the obstacle problem

Obstacle problem

$$\begin{split} U &= H_0^1(\Omega), B = B^* = \mathrm{id}, J' = -\Delta - f, \, \mathrm{and} \, G(\psi) = \varphi - \mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1} \in L^\infty(\Omega), \, \mathrm{for} \, k = 1, 2, \dots, \, \mathrm{we} \, \mathrm{seek} \, (u^k, \psi^k) \, \mathrm{satisfying} \\ &- \alpha_k \Delta u^k + \psi^k = \alpha_k f + \psi^{k-1}, \\ & u^k + \mathrm{e}^{-\psi^k} = \varphi. \end{split}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^*-u^k\|_{H^1(\Omega)}\lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

Note that $u^k \to u^*$ in $H^1(\Omega)$ even if $\alpha_k = 1$ for all $k \in \mathbb{N}$.

LVPP for the obstacle problem

Obstacle problem

$$\begin{split} U &= H_0^1(\Omega), B = B^* = \mathrm{id}, J' = -\Delta - f, \, \mathrm{and} \, G(\psi) = \varphi - \mathrm{e}^{-\psi}.\\ \text{Given } \psi^{k-1} \in L^\infty(\Omega), \, \mathrm{for} \, k = 1, 2, \dots, \, \mathrm{we} \, \mathrm{seek} \, (u^k, \psi^k) \, \mathrm{satisfying} \\ &- \alpha_k \Delta u^k + \psi^k = \alpha_k f + \psi^{k-1}, \\ & u^k + \mathrm{e}^{-\psi^k} = \varphi. \end{split}$$

Theorem (B. Keith, T. Surowiec, FoCM, 2024)

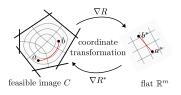
Suppose that Ω is an open, bounded and Lipschitz domain, $f \in L^{\infty}(\Omega)$ and $\varphi \in \{\phi \in H^{1}(\Omega) \cap C(\overline{\Omega}) : \Delta \phi \in L^{\infty}(\Omega)\}$, then

$$\|u^*-u^k\|_{H^1(\Omega)}\lesssim \left(\sum_{j=1}^k \alpha_j\right)^{-1/2}$$

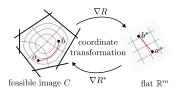
Note that $u^k \to u^*$ in $H^1(\Omega)$ even if $\alpha_k = 1$ for all $k \in \mathbb{N}$.

1. It has an infinite-dimensional formulation.

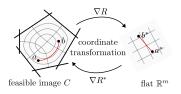
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs without requiring specialized discretizations.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.



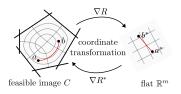
- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.



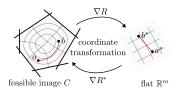
- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.



- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.

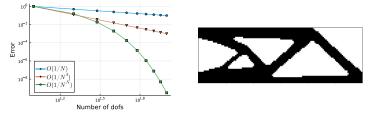


- 1. It has an infinite-dimensional formulation.
- 2. Observed discretization-independent number of linear system solves.
- 3. A simple mechanism for enforcing pointwise constraints on the discrete level (without the need for a projection).
- 4. Ease of implementation the algorithm reduces to the repeated solve of a smooth nonlinear system of PDEs *without requiring specialized discretizations*.
- 5. Robust numerical performance since convergence occurs as α_k can be kept small.



High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.



Challenges

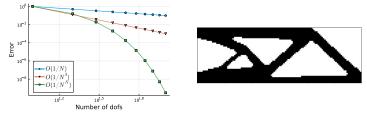
Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the DCT.

High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.



Challenges

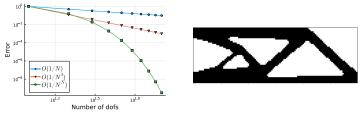
Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the DCT.

High-order finite element methods

A "high-order" discretization is one where we are approximating the solution with piecewise polynomials of high degree, e.g. $p \ge 4$.



Challenges

Naive implementations lead to slow quadrature, dense linear systems, capped convergence and, therefore, slow solve times.

Our proposal

Utilize a sparsity-promoting high-order basis that admits fast quadrature via the DCT.

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$egin{aligned} &lpha_k(
abla u^k,
abla v) + (\psi^k, v) = lpha_k(f, v) + (\psi^{k-1}, v) \ &(u^k, q) + (\mathrm{e}^{-\psi^k}, q) = (arphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$\begin{aligned} \alpha_k (\nabla u_{hp}^k, \nabla v_{hp}) + (\psi_{hp}^k, v_{hp}) &= \alpha_k (f, v_{hp}) + (\psi_{hp}^{k-1}, v_{hp}) \\ (u_{hp}^k, q_{hp}) + (e^{-\psi_{hp}^k}, q_{hp}) &= (\varphi, q_{hp}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$\begin{aligned} \alpha_k(\nabla u^k, \nabla v) + (\psi^k, v) &= \alpha_k(f, v) + (\psi^{k-1}, v) \\ (u^k, q) + (e^{-\psi^k}, q) &= (\varphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$egin{aligned} &lpha_k(
abla u_{h
ho}^k,
abla v_{h
ho}) + (\psi_{h
ho}^k, v_{h
ho}) = lpha_k(f, v_{h
ho}) + (\psi_{h
ho}^{k-1}, v_{h
ho}) \ &(u_{h
ho}^k, q_{h
ho}) + (\mathrm{e}^{-\psi_{h
ho}^k}, q_{h
ho}) = (arphi, q_{h
ho}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Weak form and a finite element discretization

Weak form of LVPP for the obstacle problem

The k^{th} LVPP subproblem seeks $(u^k, \psi^k) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$ satisfying for all $(v, q) \in H_0^1(\Omega) \times L^{\infty}(\Omega)$:

$$egin{aligned} &lpha_k(
abla u^k,
abla v) + (\psi^k, v) = lpha_k(f, v) + (\psi^{k-1}, v) \ &(u^k, q) + (\mathrm{e}^{-\psi^k}, q) = (arphi, q). \end{aligned}$$

FEM discretization

Pick finite-dimensional spaces $V_{hp} \subset H_0^1(\Omega)$, $Q_{hp} \subset L^{\infty}(\Omega)$ and seek $(u_{hp}^k, \psi_{hp}^k) \in V_{hp} \times Q_{hp}$ satisfying for all $(v_{hp}, q_{hp}) \in V_{hp} \times Q_{hp}$:

$$egin{aligned} &lpha_k(
abla u_{hp}^k,
abla v_{hp}) + (\psi_{hp}^k, v_{hp}) = lpha_k(f, v_{hp}) + (\psi_{hp}^{k-1}, v_{hp}) \ & (u_{hp}^k, q_{hp}) + (\mathrm{e}^{-\psi_{hp}^k}, q_{hp}) = (arphi, q_{hp}). \end{aligned}$$

Nonlinear system of equations... use Newton!

Solver

Apply LVPP: (VI) \rightarrow sequence of nonlinear systems of PDEs

LVPP solver pipeline.

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$A_{ij} = (\nabla \phi_i, \nabla \phi_j), \ B_{ij} = (\phi_i, \zeta_j), \ \text{and} \ [D_{\psi}]_{ij} = (\zeta_i, e^{-\psi_{hp}}\zeta_j).$$

Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_{ψ} .

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$A_{ij} = (\nabla \phi_i, \nabla \phi_j), \ B_{ij} = (\phi_i, \zeta_j), \ \text{and} \ [D_{\psi}]_{ij} = (\zeta_i, \mathrm{e}^{-\psi_{hp}}\zeta_j).$$

Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_ψ.

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

Newton linear systems

In matrix-vector form we are solving

$$\begin{pmatrix} \alpha_k \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{B}^\top & -\boldsymbol{D}_{\psi^k} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_u \\ \boldsymbol{\delta}_\psi \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_u \\ \boldsymbol{b}_\psi \end{pmatrix},$$

where for basis function $\phi_i \in V_{hp}$ and $\zeta_i \in Q_{hp}$,

$$m{A}_{ij} = (
abla \phi_i,
abla \phi_j), \ \ m{B}_{ij} = (\phi_i, \zeta_j), \ \ ext{and} \ \ [D_\psi]_{ij} = (\zeta_i, \mathrm{e}^{-\psi_{hp}} \zeta_j).$$

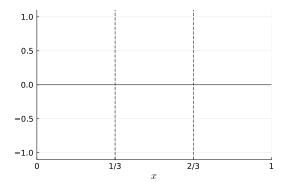
Goal

Pick FEM bases $\{\phi_i\} \subset V_{hp}$ and $\{\zeta_j\} \subset Q_{hp}$ that contain high-degree polynomials but also

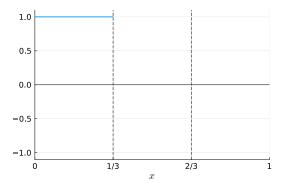
- Keep A, B and D_{ψ} sparse.
- Allow for fast assembly or action of D_ψ.

* use a discontinuous piecewise Legendre polynomial basis for ψ_{hp} and the (Babuška–Szabó) hierarchical continuous *p*-FEM basis for u_{hp} .

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

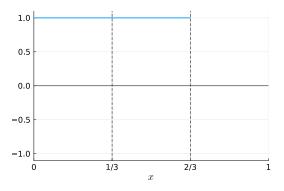


The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



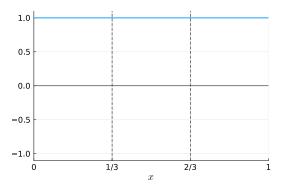
Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



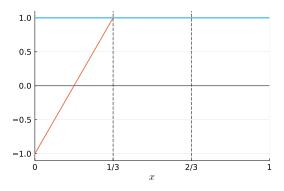
Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m dx \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



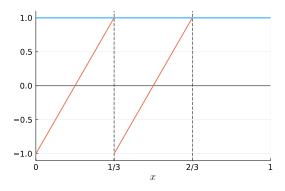
Shift-and-scale constant $P_0(x)$ on each cell.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



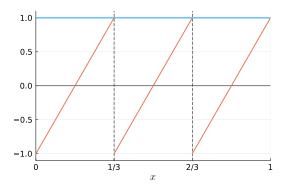
Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



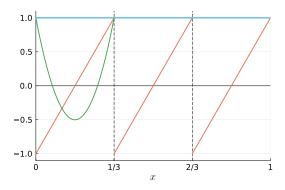
Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



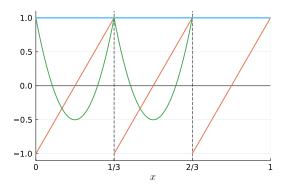
Shift-and-scale linear polynomial $P_1(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



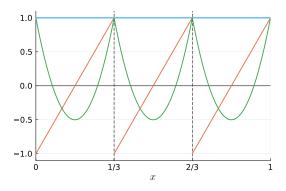
Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



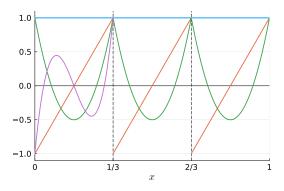
Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



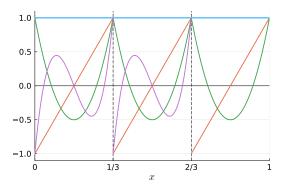
Shift-and-scale quadratic polynomial $P_2(x)$.

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



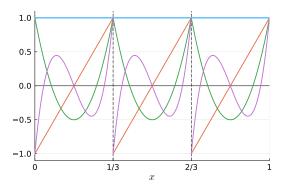
Shift-and-scale cubic polynomial $P_3(x)$ and so on...

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.



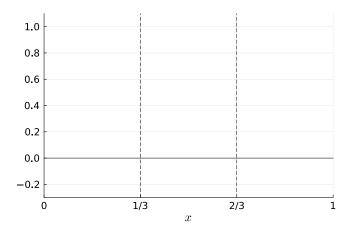
Shift-and-scale cubic polynomial $P_3(x)$ and so on...

The Legendre polynomials $P_n(x)$, $n \in \mathbb{N}_0$ satisfy $\int_{-1}^1 P_n P_m \, \mathrm{d}x \simeq \delta_{nm}$. We can shift-and-scale the polynomials to construct a 1D basis such that $(\zeta_i, \zeta_j) \simeq \delta_{ij}$ for all basis functions $\zeta_i \in Q_{hp}$. This basis has *fast* transforms.

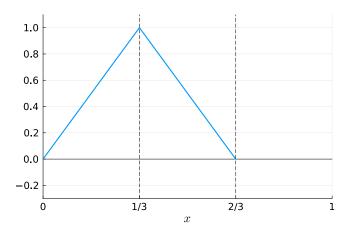


Shift-and-scale cubic polynomial $P_3(x)$ and so on...

We need a continuous FEM basis for *u*:

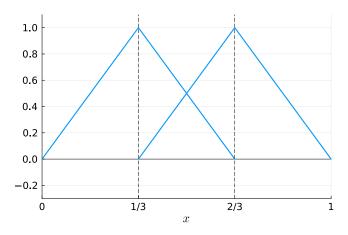


We need a continuous FEM basis for *u*:



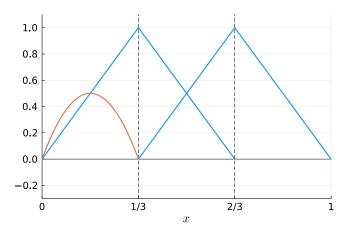
Begin with adding classical FEM piecewise linear "hat" polynomials.

We need a continuous FEM basis for *u*:



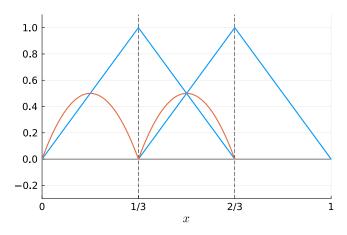
Begin with adding classical FEM piecewise linear "hat" polynomials.

We need a continuous FEM basis for *u*:



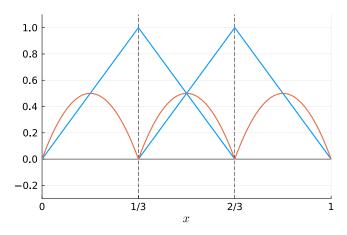
Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:



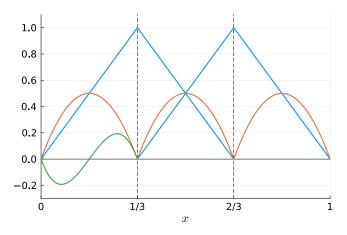
Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:



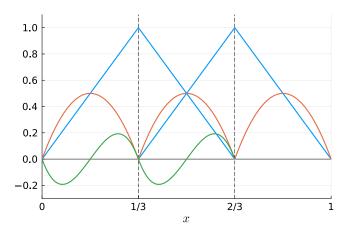
Next add quadratic "bubble" polynomials only supported on one element each.

We need a continuous FEM basis for *u*:



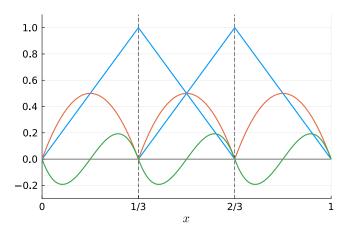
Then add cubic "bubble" polynomials.

We need a continuous FEM basis for *u*:



Then add cubic "bubble" polynomials.

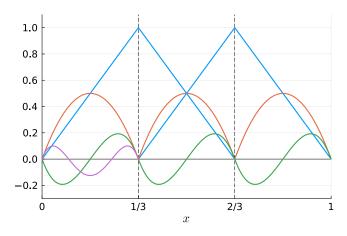
We need a continuous FEM basis for *u*:



Then add cubic "bubble" polynomials.

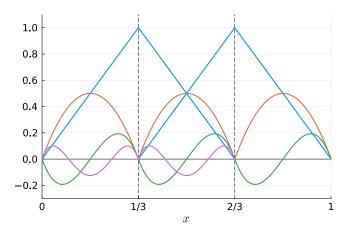
WI AS

We need a continuous FEM basis for *u*:



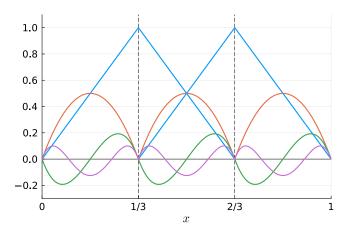
Then add quartic "bubble" polynomials and so on...

We need a continuous FEM basis for *u*:



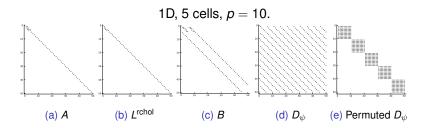
Then add quartic "bubble" polynomials and so on...

We need a continuous FEM basis for *u*:

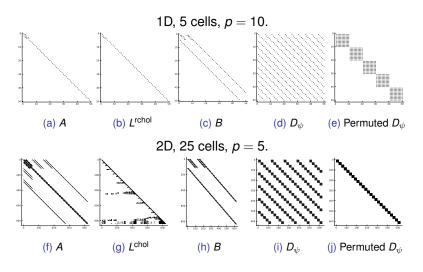


Then add quartic "bubble" polynomials and so on...

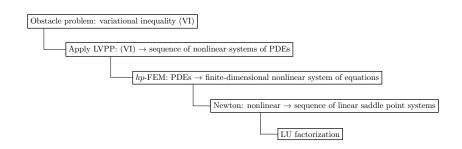
Sparsity of *A*, *B* and D_{ψ}



Sparsity of *A*, *B* and D_{ψ}

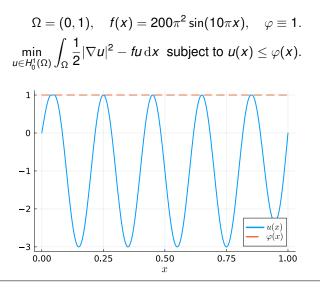


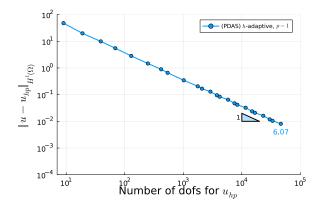
Solver



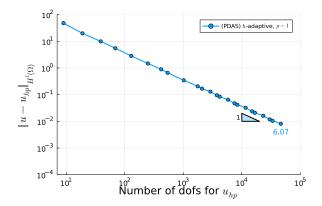
LVPP solver pipeline.

$$\begin{split} \Omega &= (0,1), \quad f(x) = 200\pi^2 \sin(10\pi x), \quad \varphi \equiv 1, \\ \min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - f u \, \mathrm{d}x \; \; \text{subject to} \; u(x) \leq \varphi(x). \end{split}$$





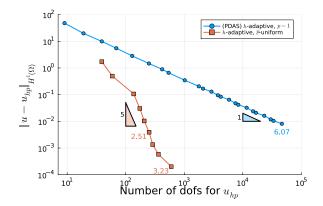
Cholesky factorization for the reduced PDAS stiffness matrix. U factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-1})$ erminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-3) Jointon linear system solves



Cholesky factorization for the reduced PDAS stiffness matrix.

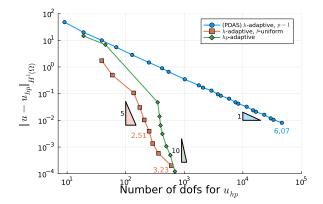
LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).

2025-04-11 19/30



Cholesky factorization for the reduced PDAS stiffness matrix.

LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2\alpha_k}, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).



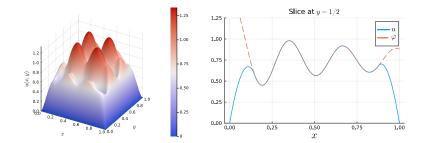
Cholesky factorization for the reduced PDAS stiffness matrix.

LU factorization for LVPP Newton systems with $\alpha_1 = 2^{-7}$, $\alpha_{k+1} = \min(\sqrt{2}\alpha_k, 2^{-3})$ and terminate once $\alpha_k = \alpha_{k-1} = 2^{-3}$. LVPP solver exhibits *hp*-independence (20-30 Newton linear system solves).

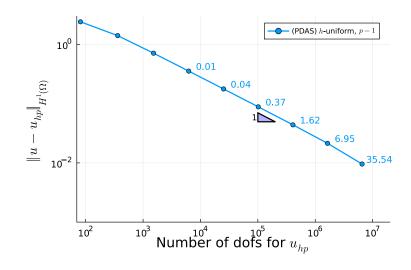
Example: oscillatory obstacle

$$\Omega = (0,1)^2$$
, $f(x,y) = 100$, and $\varphi(x,y) = (1 + J_0(20x))(1 + J_0(20y))$,

where J_0 denotes the zeroth order Bessel function of the first kind.

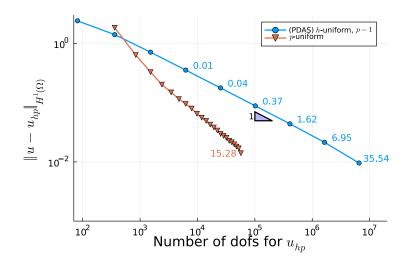


Example: oscillatory obstacle



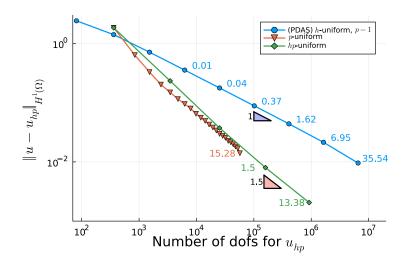
W

Example: oscillatory obstacle



W

Example: oscillatory obstacle



WI

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \boldsymbol{A}_{\alpha} & \boldsymbol{B} \\ \boldsymbol{B}^{\top} & -\boldsymbol{D}_{\psi} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_{u} \\ \boldsymbol{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_{u} \\ \boldsymbol{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{lpha}^{-1} (oldsymbol{b}_u - B \delta_\psi)$$
 and $\delta_\psi = S^{-1} (oldsymbol{b}_\psi - B^ op A_{lpha}^{-1} oldsymbol{b}_u),$

where $S \coloneqq -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$.

Advantages

 A_{α} and *B* are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-04-11 22/30

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \boldsymbol{A}_{\alpha} & \boldsymbol{B} \\ \boldsymbol{B}^{\top} & -\boldsymbol{D}_{\psi} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_{u} \\ \boldsymbol{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_{u} \\ \boldsymbol{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{\alpha}^{-1} (\boldsymbol{b}_u - B \delta_{\psi}) \text{ and } \delta_{\psi} = S^{-1} (\boldsymbol{b}_{\psi} - B^{\top} A_{\alpha}^{-1} \boldsymbol{b}_u),$$

where $S \coloneqq -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B).$

Advantages

 A_{α} and *B* are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-04-11 22/30

Block preconditioning

Recall we are repeatedly solving (where $A_{\alpha} \coloneqq \alpha A$)

$$\begin{pmatrix} \boldsymbol{A}_{\alpha} & \boldsymbol{B} \\ \boldsymbol{B}^{\top} & -\boldsymbol{D}_{\psi} \end{pmatrix} \begin{pmatrix} \boldsymbol{\delta}_{u} \\ \boldsymbol{\delta}_{\psi} \end{pmatrix} = \begin{pmatrix} \boldsymbol{b}_{u} \\ \boldsymbol{b}_{\psi} \end{pmatrix}.$$

Schur complement factorization

A Schur complement factorization reveals that

$$\delta_u = A_{lpha}^{-1} (oldsymbol{b}_u - B \delta_\psi) ext{ and } \delta_\psi = S^{-1} (oldsymbol{b}_\psi - B^ op A_{lpha}^{-1} oldsymbol{b}_u),$$

where
$$S \coloneqq -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$$
.

Advantages

 A_{α} and B are sparse and A_{α} admits a cheap Cholesky factorization that we only compute once.

2025-04-11 22/30

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - B^{\top}A_{\alpha}^{-1}\boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \tilde{S} .

We choose

$$ilde{S} \coloneqq -(D_\psi + ilde{B}^ op ilde{A}_lpha^{-1} ilde{B})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - B^{\top}A_{\alpha}^{-1}\boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \tilde{S} .

We choose

$$ilde{S} \coloneqq -(D_\psi + ilde{B}^ op ilde{A}_lpha^{-1} ilde{B})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - \boldsymbol{B}^{\top} \boldsymbol{A}_{\alpha}^{-1} \boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \tilde{S} .

We choose

$$ilde{\mathsf{S}} \coloneqq -(D_\psi + ilde{\mathsf{B}}^ op ilde{\mathsf{A}}_lpha^{-1} ilde{\mathsf{B}})$$

Complication

 $S = -(D_{\psi} + B^{\top} A_{\alpha}^{-1} B)$ is dense — it cannot be assembled and factorized quickly.

However, given a vector **y** we may compute Sy efficiently.

Iterative solver

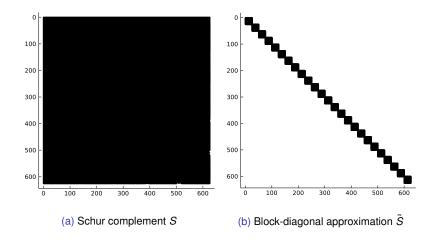
Solve $S\delta_{\psi} = (\boldsymbol{b}_{\psi} - \boldsymbol{B}^{\top} \boldsymbol{A}_{\alpha}^{-1} \boldsymbol{b}_{u})$ with GMRES preconditioned with a block-diagonal Schur complement approximation \tilde{S} .

We choose

$$ilde{\mathbf{S}} \coloneqq -(\boldsymbol{D}_\psi + ilde{\mathbf{B}}^ op ilde{\mathbf{A}}_lpha^{-1} ilde{\mathbf{B}})$$

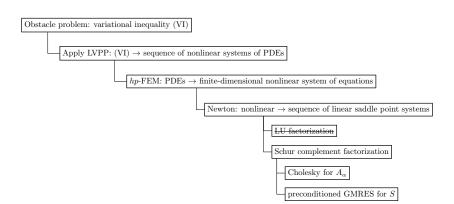
Brown University Scientific Computing Seminar, Hierarchical proximal Galerkin

Schur complement approximation



WI AS

Solver



LVPP solver pipeline.

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u \in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
 (

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

1. Freeze T and solve the obstacle subproblem (1) for u,

2. Freeze u and solve the nonlinear PDE (2) for T.

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
(2)

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

1. Freeze T and solve the obstacle subproblem (1) for u,

2. Freeze u and solve the nonlinear PDE (2) for T.

The thermoforming quasi-variational inequality seeks u minimizing

$$\min_{u\in H_0^1(\Omega)} \int_{\Omega} \frac{1}{2} |\nabla u|^2 - \mathit{fu} \, \mathrm{d}x \text{ subject to } u \leq \varphi(T) \coloneqq \Phi_0 + \xi T, \qquad (1)$$

where Φ_0 and ξ are given and T satisfies

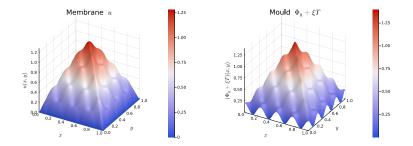
$$-\Delta T + \gamma T = g(\Phi_0 + \xi T - u), \quad \partial_{\nu} T = 0 \text{ on } \partial\Omega.$$
(2)

Solver strategy

We will solve the thermoforming problem via a fixed point approach, i.e. repeatedly solve

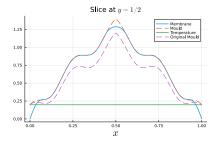
- 1. Freeze T and solve the obstacle subproblem (1) for u,
- 2. Freeze u and solve the nonlinear PDE (2) for T.

$$\begin{split} \Omega &= (0,1)^2, \quad f(x,y) = 100, \qquad \xi(x,y) = \sin(\pi x)\sin(\pi y), \qquad \gamma = 1, \\ \Phi_0(x,y) &= 11/10 - 2\max(|x-1/2|, |y-1/2|) + \cos(8\pi x)\cos(8\pi y)/10, \\ g(s) &= \begin{cases} 1/5 & \text{if } s \leq 0, \\ (1-s)/5 & \text{if } 0 < s < 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$



WI AS

$$\begin{split} \Omega &= (0,1)^2, \quad f(x,y) = 100, \qquad \xi(x,y) = \sin(\pi x)\sin(\pi y), \qquad \gamma = 1, \\ \Phi_0(x,y) &= 11/10 - 2\max(|x-1/2|, |y-1/2|) + \cos(8\pi x)\cos(8\pi y)/10, \\ g(s) &= \begin{cases} 1/5 & \text{if } s \leq 0, \\ (1-s)/5 & \text{if } 0 < s < 1, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$



AS

		Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T	
p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00

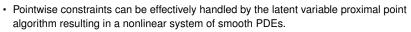
		Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T	
p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00

Partial degree

			Obstacle su	ubsolve for u	Nonlinear su	ubsolve for T
	р	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
	1	Î. Î.				
Partial	degre	e				
	Outer loop					

			Obstacle subsolve for <i>u</i>		Nonlinear subsolve for T	
	p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
	6	4	15.00	11.00	1.50	2.83
	12	4	15.25	15.85	2.00	3.13
	22	4	16.00	19.36	2.00	3.00
	32	4	16.00	21.09	2.00	3.00
	42	4	15.75	21.75	2.25	3.11
	52	4	15.00	22.40	2.00	3.00
	62	4	15.00	21.90	2.00	3.00
	72	4	15.00	21.90	2.00	3.00
	82	4	15.25	21.61	2.00	3.00
Outer loop st			Average Newton steps to solve an obstacle	Average preconditioned GMRES iteratior per Newton step	IS	
			subproblem			

		Obstacle subsolve for u		Nonlinear subsolve for T	
p	Fixed point	Avg. Newton	Avg. GMRES	Avg. Newton	Avg. GMRES
6	4	15.00	11.00	1.50	2.83
12	4	15.25	15.85	2.00	3.13
22	4	16.00	19.36	2.00	3.00
32	4	16.00	21.09	2.00	3.00
42	4	15.75	21.75	2.25	3.11
52	4	15.00	22.40	2.00	3.00
62	4	15.00	21.90	2.00	3.00
72	4	15.00	21.90	2.00	3.00
82	4	15.25	21.61	2.00	3.00
Outer loop s			Average preconditioned GMRES iteratior per Newton step	Average New	
		obstacle subproblem	per mewion step	subproblem	



- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order DG Legendre polynomial basis that admits fast quadrature via the DCT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order DG Legendre polynomial basis that admits fast quadrature via the DCT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order DG Legendre polynomial basis that admits fast quadrature via the DCT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order DG Legendre polynomial basis that admits fast quadrature via the DCT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

- Pointwise constraints can be effectively handled by the latent variable proximal point algorithm resulting in a nonlinear system of smooth PDEs.
- The PDE system is linearized with Newton.
- For the obstacle problem, the nonlinearity is confined to the latent variable ψ which can be discretized with a high-order DG Legendre polynomial basis that admits fast quadrature via the DCT.
- We discretize the membrane *u* with the hierarchical continuous *p*-FEM basis.
- This leads to sparse linear systems which admit simple preconditioners.
- This leads to fast convergence with competitive wall clock solve times.

Latent variable proximal point

Jørgen S. Dokken, Patrick E. Farrell, Brendan Keith, I. P., Thomas M. Surowiec, *The latent variable proximal point algorithm for variational problems with inequality constraints* (2025), https://arxiv.org/abs/2503.05672.

hp-FEM for obstacle and elastic-plastic torsion problems

Thank you for listening!

⊠ papadopoulos@wias-berlin.de

