Papers
Numerical analysis of topology optimization problems
I. P. A. Papadopoulos, Numerical analysis of the SIMP model for the topology optimization problem of minimizing compliance in linear elasticity, Numerische Mathematik, 2024. (Paper), (arXiv).
I. P. A. Papadopoulos, Numerical analysis of a discontinuous Galerkin method for the Borrvall-Petersson topology optimization problem, SIAM Journal on Numerical Analysis, 2022. (Paper), (arXiv).
I. P. A. Papadopoulos, E. Süli Numerical analysis of a topology optimization problem for Stokes flow, Journal of Computational and Applied Mathematics, 2022. (Paper), (arXiv).
Computing multiple solutions of nonlinear problems
I. P. A. Papadopoulos, P. E. Farrell, Preconditioners for computing multiple solutions in three-dimensional fluid topology optimization, SIAM Journal on Scientific Computing, 2023. (Paper), (arXiv).
I. P. A. Papadopoulos, P. E. Farrell, T. M. Surowiec, Computing multiple solutions of topology optimization problems, SIAM Journal on Scientific Computing, 2021. (Paper), (arXiv).
Semismooth Newton methods for nonsmooth equations
I. P. A. Papadopoulos, Hierarchical proximal Galerkin: a fast hp-FEM solver for variational problems with pointwise inequality constraints, preprint, 2024. (arXiv).
A. Alphonse, C. Christof, M. Hintermüller, I. P. A. Papadopoulos, A globalized inexact semismooth Newton method for nonsmooth fixed-point equations involving variational inequalities, preprint, 2024. (arXiv).
Hierarchical hp-finite element methods
I. P. A. Papadopoulos, S. Olver A sparse hierarchical hp-finite element method on disks and annuli, preprint, 2024. (arXiv).
K. Knook, S. Olver, I. P. A. Papadopoulos, Quasi-optimal complexity hp-FEM for Poisson on a rectangle, preprint, 2024. (arXiv).
Sparse spectral element methods on the disk & annulus
I. P. A. Papadopoulos, T. S. Gutleb, R. M. Slevinsky, S. Olver, Building hierarchies of semiclassical Jacobi polynomials for spectral methods in annuli, SIAM Journal on Scientific Computing, 2024. (Paper), (arXiv).
Pseudospectral methods for the fractional Laplacian
I. P. A. Papadopoulos, T. S. Gutleb, J. A. Carrillo, S. Olver, A frame approach for equations involving the fractional Laplacian, preprint, 2023. (arXiv).
T. S. Gutleb, I. P. A. Papadopoulos, Explicit fractional Laplacians and Riesz potentials of classical functions, preprint, 2023. (arXiv).
I. P. A. Papadopoulos, S. Olver, A sparse spectral method for fractional differential equations in one-spatial dimension, Advances in Computational Mathematics, 2024. (Paper), (arXiv).